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INTRODUCTION

Hyperbaric oxygen (HBO) therapy is based on administering 
pure oxygen to the patient while undergoing increased 
ambient pressure. During the therapy session, the erythrocyte 
hemoglobin reaches 100% saturation and much more oxygen 
is dissolved in the blood plasma than regular; therefore high 
amounts of oxygen is delivered to almost all tissues that, in 
case of a number of well-defined pathologies, will benefit from 
this condition. Examples for pathologies which are known 
for beneficial effects of HBO therapy are problem wounds, 
necrotizing soft tissue infections, delayed radiation injury, 
refractory osteomyelitis, thermal burns, compromised skin 
grafts and flaps, crush injury, and compartment syndrome. 
Furthermore, the main health problem for which HBO 
is a life-saving treatment by enhancing blood and tissue 
oxygenation is, of course, carbon monoxide poisoning. 
Clostridial myositis or myonecrosis (gas gangrene) is also an 
important indication for HBO, which is due to the anaerobe 
characteristic of the pathogenic agent and can be cured by 
maintenance of the hyperoxic state [1]. On the other hand, 
a second mechanism of action of HBO treatment is the 
bubble reducing effect depending on the Boyle-Marriott 
law by increasing the ambient pressure. This mechanism 

comprises another group of life-saving indications for HBO: 
Decompression sickness and air/gas embolism. Pathologies 
such as central retinal artery occlusion [1,2] and idiopathic 
sudden sensorineural hearing loss [3] are also reported to 
benefit from HBO therapy and could be ordered, at least in 
part, to this pressure-dependent mechanism, but are also 
related with its hyperoxic effect.

Apart from cases representing the live-saving modality of 
HBO therapy where it is regularly the first choice for the 
physician, most other indications are based on inflammatory or 
infectious background for which HBO is mainly administered 
as an adjunctive or complementary method. In our institution, 
a number of experimental studies have been formerly 
conducted on the effects of HBO alone or in combination 
with other therapeutic approaches on inflammatory/
infectious models which demonstrated beneficial effects for 
uveitis [4], myositis [5], cystitis [6-8], pancreatitis [9-11], 
colitis [12-17], mediastinitis [18], nephrotic syndrome [19,20], 
spinal cord injury [21,22], colonic anastomosis [23,24], 
osteomyelitis [25], and even for sepsis [26-28]. Another series 
of studies reflected good outcome with HBO in experimental 
ischemia/reperfusion [29-31] as an important model of 
inflammation, or cerebral ischemia [32-34]. Case reports and 
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heme oxygenase-1 are also involved in several mechanisms.  This paper aims to briefly review some of the 
known interactions of HBO-triggered molecular details. By this way, we hope to attract more attention to this 
interesting research area in order to provide scientists a view for future projects.
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series conducted on inflammatory [35,36] as well as other 
pathologic conditions [37,38] also represented profit when 
treated with HBO.

OXYGEN TOXICITY AND HBO

Oxygen is essential for life; in other words, for human being life 
without oxygen is impossible. Furthermore, it is also well known 
that the production of free radicals, particularly reactive oxygen 
species (ROS), is inevitable in aerobic life. Due to its atomic 
structure, oxygen itself owns a biradical nature and has also the 
ability to trigger ROS production in higher amounts. Exposure to 
supranormal levels of oxygen is therefore a case which has to be 
handled with care even in normobaric conditions [39]. Starting 
with the report of Lorrain Smith in 1899 [40], a huge number of 
articles regarding the details of oxygen toxicity are apparent in the 
medical literature, mainly describing a relation with ROS [41-46]. 
Due to this relation and known fact that oxidative stress is a 
consequence of enhanced ROS production, HBO has been used 
as a good model for inducing oxidative stress in experimental 
conditions; between the mid 80s and mid 90s a research team 
from the University of Texas [47-51], and others [52,53] 
concentrated on preventing the lung and or brain against HBO-
induced toxicity by supporting the endogen antioxidant system, 
mainly glutathione (GSH) and superoxide dismutase (SOD). 
However, it has to be noted that such studies [47-53] used 
generally extremely high pressure/duration ranges, i.e. higher than 
4 atmospheres and longer than 2 h, which cannot be adapted to 
the regular use of HBO for therapeutic reasons. According to 
the Undersea and Hyperbaric Medical Societies’ guidelines, the 
maximal pressure and duration of HBO administration is set to 
be 3 atmospheres and 2 h [54]; this range is proven to be safe 
and potential side-effects are very rarely reported.

To elucidate the relation between HBO treatments within the 
safe therapeutic limits, i.e. at the maximal 3 atmosphere/2 h 
range, and its potential oxidative effect in living organisms, a 
research group lead by the Department of Physiology of our 
institution conducted a series of experimental studies in rats. 
In those studies, the lung, since being the first encountering 
site of hyperbaric hyperoxia, blood/erythrocytes, since building 
a bridge between the lung and all other tissues during delivering 
the huge amounts of oxygen, and the brain, because of its 
highest vulnerability to hyperoxic conditions compared to 
other organs, were chosen as the ideal targets for evaluating the 
effects of HBO. At the preliminary stage, a clear relation with 
HBO oxidative stress markers and indices of the endogenous 
antioxidant system were seen [55,56], for which the potential 
interaction of the pressurized ambient air was eliminated and the 
effect seem mainly to depend on pure oxygen exposure [57,58]. 
One step forward, the increasing effect of HBO on oxidant/
antioxidant biomarkers was defined to be pressure-related in 
a nearly linear manner [58,59]. Then, a similar linear relation 
with the exposure time was also observed [60,61], leading to 
the conclusion that the hyperbaric hyperoxic oxidative effect 
is both pressure- and duration-dependent [62].

After the definition of the exposure pressure/duration-related action 
of HBO on the organism’s oxidant/antioxidant systems [58-62], 

we concentrated on how long the increased levels of oxidation 
products or antioxidants persist after a single exposure to the 
maximal HBO-administration limit at 3 atmospheres for 2 h: As 
a result, all alterations turned to normal range at last in 90 min 
in the lung and erythrocytes [63], as well as in the brain cortex 
tissue [64]. Interestingly, the reversal of oxidation products 
occurred approximately half an hour earlier than those of the 
antioxidant enzymes’ activities [63,64], which was interpreted to 
prove the safety of HBO administrations at therapeutic ranges. 
Another interesting note from these studies was the fact that in 
the brain cortex tissue [64] the drop of oxidation products was 
earlier apparent than in the lung and erythrocytes [63]. This 
finding reflected that, although being categorized as a highly 
vulnerable target for hyperoxia, the brain tissue owns relatively 
good endogenous defense mechanisms against hyperbaric 
hyperoxic stress, at least in part at the used maximal pressure/
duration range of the above-mentioned experiments. Supportively, 
in another study, one of these potential defense mechanisms was 
asserted to be asymmetric dimethylarginine [65], an endogenous 
inhibitor of nitric oxide synthase.

Nearly all of the above studies tested the oxidative potential 
of HBO when administered in a single-session modality. 
However, in clinic conditions, HBO is generally planned for at 
least 5 and sometimes up to 40 or, in troublesome cases, more 
sessions near 100. Therefore, in another set of experiments 
the potential cumulative oxidative effect of HBO was tested 
in rats exposed to 5, 10, 15, 20, 30, and 40 daily consecutive 
90 min sessions at 2.8 atmospheres [66-68]. The main result 
of these studies reflected evidence for an accumulation of 
oxidation products with prolonged exposure periods in the 
lung [66] and erythrocytes [67], but not in brain tissue [68]. 
The good news, however, was that the level of antioxidant 
enzymes activities accompanied the increase of oxidative stress 
markers; so, a real “oxidative stress” [69] was not apparent 
which -one more time- supports the safety of HBO within its 
approved therapeutic limits. On the other hand, with regard to 
the results of the brain study [68], a better defense mechanism 
in the cerebral cortex, white matter, and cerebellum [65] was 
present again.

ADDITIONAL MECHANISMS OF ACTION FOR HBO

For a long time, the efficacy of HBO was simply explained 
by the above explained two mechanisms, i.e. the pressure-
dependent bubble-reducing action and the maximal saturation-
dependent hyperoxygenation of tissues. With beginning of 
the 2000s, the molecular interactions of the hyperoxic effect 
started to be argued widely. Many physiologic roles of free 
radicals and reactive species in cellular function and signaling 
were defined [70,71] with particular importance referred to the 
superoxide anion hydrogen peroxide cascade [71-73]; these two 
versatile endogenously produced reactive intermediates were 
also brought forward to be responsible for - at least in part - the 
beneficial effects of HBO [74].

There is no doubt that, in case of hyperbaric hyperoxia, 
e.g. HBO, the production of ROS is enhanced, and the 
superoxide radical along with hydrogen peroxide possess the 
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supreme fraction among them. The hyperoxic oxidative effect 
is inevitable during HBO exposures and, by this way, not only 
the delivery of supra-physiologic oxygen levels but also the 
triggering action of hyperoxia on several molecular pathways is 
responsible for the benefits of this therapeutic modality [75]. 
The first molecule which is reported to be a mediator for 
the beneficial actions of HBO, particularly by supporting 
the tolerance of the organism against oxidative damage, was 
heme oxygenase-1 (HO-1) [76], also called heat shock protein 
(HSP)32, an ubiquitously expressed multitask enzyme with the 
main job of heme degradation but also known for its important 
roles in the regulation of cell proliferation, differentiation, 
oxidant/antioxidant systems, and apoptosis, thereby affecting 
inflammatory processes and immune response [77]. In this 
context, the neuroprotective action of HO-1 [78] could also 
explain the better outcome in the oxidative status of the “brain” 
studies [64,68] mentioned above.

With a connection to HO-1, the nuclear factor erythroid 
2-related factor 2 (Nrf2), an important component of the cellular 
defense, presents also a relation with HBO as a mediator of its 
effects [79]. Nrf2 is a redox-sensitive transcription factor and 
HO-1 is defined to be its principal target protein [80]. With this 
regard, involvement of the Nrf2/HO-1 axis looks very important, 
particularly in the use of HBO for pretreatment/preconditioning 
reasons [81-83]. Apart from HSP32 (HO-1), taking a look on 
other members of the HSP family, which are proteins that are 
produced by cells in response to exposure to stressful conditions, 
increased values of HSP70 [84-86] but not HSP72 [87,88] were 
reported with HBO exposure.

Another target molecule which is known to be involved in the 
action mechanism(s) of HBO is the hypoxia-inducible factor-1 
alpha (HIF-1α) [75]. HIFs are transcription factors that respond 
to changes of oxygen availability in the cellular environment, 
generally by increased expression in response to hypoxia [89]. 
Logically, due to providing hyperoxia but not hypoxia, the 
HBO-mediated activation of HIF-1α-related pathways looks 
somewhat ironic. This could be explained by the rapid fall of 
tissular oxygen levels after the hyperoxic state, i.e. imitating 
hypoxia. It is reported that continuous hypoxia induces only 
HIF-1α, whereas intermittent hypoxia induces both HIF-1α 
and Nrf2 [90]. Concordantly, the hyperoxia-normoxia-hyperoxia 
cycle between HBO sessions can be adapted to normoxia-
hypoxia-normoxia loops, i.e. simulating intermittent hypoxia; 
as a result, both HIF-1α and Nrf2 are stimulated by HBO. The 
interactions of transcription factors and their target proteins 
have already a lot of secrets to be elucidated; as an interesting 
report for the HBO-related molecules defined yet, it was stated 
that HIF-1α normally down-regulates HO-1 induction, but in 
case of Nrf2 over-expression the inhibitory effect of HIF-1α 
gets reversed and by this way, both Nrf2 and HIF-1α contribute 
to the HO-1-mediated action [91]. Therapeutic effects of 
HBO which depend on HIF-1α-related pathways are mainly 
concentrated on increasing the ischemic tolerance [92-94] 
and wound healing [95,96]. But controversially, the inhibitory 
action of HBO on HIF-1α expression due to its hyperoxic state 
while undergoing the therapy session has also been reported for 
mediating beneficial effect [97].

HBO AND THE ENDOGENOUS ANTIOXIDANT SYSTEM

In the above listed experiments proving a pressure [58,59] and 
exposure time-dependent [60,61] relation of HBO on oxidant 
and antioxidant markers, generally elevated activities of the 
main antioxidant enzymes such as SOD, catalase, and GSH 
peroxidase were detected [62]. The high levels of enzyme 
activities persisted longer than those of oxidation products’ 
lifetime [63,64]. Earlier studies which aimed to test preventive 
strategies against oxygen toxicity by administration of extreme 
higher pressure/duration procedures resulted in the exhaustion 
of antioxidant sources [47-51]. A continuing study of our 
institutional team presented the ability of HBO on increasing 
copper/zinc (Cu/Zn)-SOD expression at its mRNA level [98]. 
Interestingly, melatonin, a versatile molecule with strong 
antioxidant action [99], lowered the Cu/Zn-SOD mRNA 
expression rate of HBO; however, when administered alone, 
melatonin itself caused nearly the same Cu/Zn-SOD expression 
level as HBO [100], indicating an interaction between 
melatonin, and HBO which has to be thoroughly defined. 
Indeed, reports of our team [101-103] and others [104-106] 
designated melatonin as an ideal supportive agent for HBO 
therapy which will not disturb and could possibly contribute 
to the healing effects by protecting potential uncontrolled 
oxidative reactions.

Taking a nearer look on our studies regarding the melatonin-
HBO interactions on oxidant/antioxidant status of the organism; 
melatonin was able to reduce the increased level of oxidation 
products in both lung [101] and brain [102] tissue, whereas the 
HBO-induced increase of antioxidant enzymes activities were 
only slightly affected by melatonin administration. Results of the 
single-session studies [101,102] were also supported by similar 
outcome later, shown in a consecutively administered 10 days 
HBO experiment [103]. Interestingly, all three works reflected 
a higher efficacy for endogenously secreted melatonin than the 
exogenously administered option at pharmacologic doses.

The increasing effect of melatonin on antioxidant enzymes 
gene expression has been known for a relatively long time [107]. 
To date, it is also clear that HBO has the ability to induce 
antioxidant gene expression [98,108]. However, the details of 
molecular interactions between melatonin and HBO-triggered 
pathways still need to be elucidated and warrant promising 
results for the scientific background of hyperbaric medicine.

CONCLUDING REMARKS

As extensively reviewed by Prof. Stephen R. Thom, pioneer of 
hyperbaric medicine research, “oxidative stress is fundamental 
to HBO therapy” [75]; however, the oxidative level caused by 
HBO within its usual therapeutic limits could be characterized 
as a “controlled oxidative stress”, since the rise of oxidation 
products are generally accompanied by significantly increased 
levels of antioxidants. On the other hand, controlled levels of 
oxidative stress which do not overcome the antioxidant capacity 
of the organism can trigger a number of molecular pathways by 
using the reactive intermediates as signaling agents.
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Taken together, the hyperoxic state as a rule of HBO 
administrations,  can beneficial ly act via both the 
hyperoxygenation of tissues and the ROS-induced actions 
triggering several bioactive molecules including Nrf2, HIF-1α, 
and HO-1. Of course, the molecular interactions of HBO and 
HBO-induced mechanisms are not limited to these 3 examples 
and more studies are needed in order to enlighten the exact 
mechanisms of action in detail.
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