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Albeit the existence of ‘free radicals’ having been 

known for a considerable time within the sphere of 

chemistry, these interesting kinds of oxidizing 

molecules attracted the attention of medical scientists 

and physicians during the early 1950s when Denham 

Harman started to publish a number of reports on the 

“free radical theory of aging” [1]. Two decades later, 

grounded in the recognition that free radical production 

in the cell occurs mainly in the mitochondria and that 

mutations of the mitochondrial DNA (mtDNA) are 

strongly involved in the aging process, this theory 

evolved into the “mitochondrial theory of aging” [2, 3]. 

Despite the ‘theory’ label, the entire medical world 

believes, at least in part, in the truth of this explanation 

for the underlying mechanisms of - the unavoidable 

biological process - aging.  

Starting with the 1970s, overwhelming research began 

to appear in the medical literature elucidating the 

relationship between free radicals with this or that 

pathophysiological condition which resulted in the 

formulation of the definition of “free radical diseases” 

[4]. Through this, many pathologies such as essential 

hypertension, atherosclerosis, autoimmune diseases and 

cancer were explained by the involvement of free 

radicals [5]. Depending on the molecular source or 

basis, the simple term ‘free radical’ became widened by 

other descriptions such as ‘reactive oxygen species’ or 

‘oxygen free radicals’. Short after the discovery by 

Ignarro et al [6] that the endogenous vascular dilating 

mediator widely known as the endothelium-derived 

relaxing factor (EDRF) was nitric oxide (NO
•
), a 

gaseous radical molecule, another term, namely 

‘reactive nitrogen species’ was included to the 

nomenclature of this particular field of science.  

A significant number of radicals such as the superoxide 

free radical anion (O2
•–

) or the hydroxyl radical (
•
OH) 

and another group of ‘non-radical reactive molecules’ 

such as hydrogen peroxide (H2O2) and peroxynitrite 

(ONOO
–
) were defined and various deleterious effects 

of these molecules have been described through the 

past decades [7, 8]. Ultimately, damage to cells by 

these highly reactive oxygen and nitrogen species 

(ROS and RNS) occurs as a result of alterations of 

macromolecules [9, 10]. These include lipoperoxida-

tion of polyunsaturated fatty acids in membrane lipids, 

protein oxidation, DNA strand breakage [11-14], RNA 

oxidation [15], mitochondrial depolarization and  
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Figure 1. Major known oxidant/antioxidant pathways in living organisms. Many pathologic processes including inflammation, ischemia, 
irradiation, etc. as well as physiological functions such as cellular respiration can trigger or increase superoxide radical (O2

•–) production. The 

antioxidant enzyme superoxide dismutase (SOD) facilitates the dismutation reaction of O2
•– to hydrogen peroxide (H2O2). H2O2 can be reduced to 

water (H2O) via different ways: the glutathione cycle in which the reduced form of glutathione (GSH) was oxidized to glutathione disulfide 
(GSSG) and then will again be reduced to GSH plays the major role; mainly glutathione peroxidase (GPX) glutathione reductase (GR) and 

glutathione-S-transferase (GST), but also glutathione synthethase (GS), glutaredoxin (GRX) and glutamate cysteine ligase (GCL) are involved in 

this system. Catalase (CAT), thioredoxin (TRX) and peroxiredoxin (PRX) are also fighting against H2O2 overproduction; heme oxygenase-1 

(HO-1) and several metal chelators are other important members of the endogenous redox state regulatory systems. If free Fe3+ or Cu2+ are 

present around H2O2, another possible - but unwanted - pathway is the production of the hydroxyl radical (•OH), one of the most reactive species 

known, via the Fenton and following Haber-Weiss reactions; •OH have the ability to oxidize almost all biomolecules. Another unwanted pathway 
is, in the presence of excessive amounts of nitric oxide (NO•) produced mainly by the inducible isotype of nitric oxide synthase (iNOS), the 

outcompeting of SOD for its substrate O2
•–. In this case the reaction of NO• with O2

•– will produce peroxynitrite (ONOO–), a highly reactive 

molecule; S-nitrothiols (RSNOs) such as S-nitrosoglutathione (GSNO) can be produced in following steps. On the other hand, the radical or non-
radical reactive species can trigger the activation of ‘redox sensitive transcription factors’ such as nuclear factor kappa B (NF-кB) or activator 

protein-1 (AP-1) which can mediate both a lot of physiological functions or inflammatory responses via several cytokines. Particularly in chronic 
pathologies, the re-activation of reactive molecules can lead to a vicious circle. Please note that 'antioxidants' cover a large broad of molecules 

and they can act in much more steps of redox reactions than simply shown in the figure; e.g. inhibiting ROS generating enzymes, supporting the 

production of endogenous defense molecules, scavenging free radicals. [Other abbreviations: ROS, reactive oxygen species; RNS, reactive 
nitrogen species; TNFα, tumor necrosis factor alpha; IL-1β, interleukin 1-beta; COX-2, cyclooxygenase 2; Nrf2, Nuclear factor erythroid 2-

related factor 2] 

 

apoptosis. Mutations of the nuclear protein p53 which 

may lead to apoptosis are also associated with oxidative 

stress. Impairments of cellular/tissue functions caused 

by oxidative stress have been implicated in disease 

states, viz., Alzheimer’s [16] and Parkinson’s disease 

[17], various cancers [18], and aging processes [19], 

amoungst others. Under normal conditions, reactive 

species are cleared by antioxidants which, broadly 

speaking, refer to molecules that are able to react 

directly with oxidants to reduce their oxidation 

capacity, e.g. scavenging enzymes such as superoxide 

dismutase, catalase, glutathione peroxidase, etc., or 

chemicals inhibiting the activities of oxidant generating 

enzymes such as xanthine oxidase, e.g. polyphenols. 

These molecules can be either natural or synthetic, 

either hydrophilic such as ascorbic acid or hydrophobic 

such as α-tocopherol. By these actions, antioxidants can 

either prevent the generation of oxidizing species or 

reduce the effects of dangerous metabolic or xenobiotic 

oxidants and hence prevent the body from acute or 

chronic diseases and/or repair the cellular/tissue 

damage already sustained. Therefore, it is not 

surprising that a large number of studies have been 

concentrated on molecules with antioxidant activity for 

therapeutic purposes to counteract the harmful effects 

of reactive species and oxidative stress. It should be 

noted, however, that a considerable number of 

antioxidant molecules were instead proved to have pro-

oxidant potential and to promote oxidative reactions 

[20]. Thus, the use of antioxidants for preventing 

against possible radical-caused injuries, namely 

“antioxidant therapy”, is today still a controversial 

issue [21, 22] and may explain often contradictory 

finding in human trials.  

On the other hand, it also became obvious that free 

radicals are not only involved in pathological 

processes, but their existence is also necessary for 

many physiological functions of living organisms 

[23, 24], including ‘healthy aging’ [25, 26]. Lipid 

peroxidation, a major consequence of free radical-
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dependent injury, was also reported to have potential 

for both deleterious and beneficial effects [27, 28]. It is 

now widely known that these biologically ‘hyper’-

active molecules are acting as signaling agents in 

various cellular pathways opening a new research era, 

the so-called “redox signaling” [29-31]. Hydrogen 

peroxide and peroxynitrite, in particular, have been 

implicated in a considerable number of cellular 

signaling cascades [32-34]; depending on their non-

radical structure these molecules have a relative longer 

half-life than almost all other oxidants allowing them to 

migrate away from their production sites and to diffuse 

through membranes. Herewith, transcription factors 

such as AP-1, NF-кB and/or Nrf2 have been reported to 

be involved in these redox-modulated signaling 

pathways [35-37]. 

Taken together, the current concensus is that a 

controlled and sustained production of both radical and 

non-radical reactive molecules is essential for normal 

physiological and cellular functions; however, their 

uncontrolled or excessive production can cause 

‘oxidative/nitrosative stress’ resulting in the destruction 

of structural biomolecules consequently leading 

cellular dysfunction and death and ultimately to tissue 

and organ injury or failure. The scientific world is 

encouraging engaged in investigating whether oxidants 

or antioxidants are friends or foes for each other and/or 

for living organisms; more and more research is being 

performed in order to clarify the mechanisms of action 

of endogenously produced oxidizing molecules, their 

relation to physiological processes and interactions 

with other biomolecules.  

With this first issue of “Oxidants and Antioxidants in 

Medical Science”, we announce a new periodical 

resource for research professionals in this attractive 

area in order to find chance to share their experiences 

and knowledge with medical professionals through the 

medical literature. We are starting with a 10-article 

issue from authors and research groups all over the 

world including the United States, Cuba, Belgium, 

Estonia, India and Malaysia. The first issue includes 

both review articles authorized by senior academicians 

and research papers of the field of redox science. Our 

main aim is to provide relevant and reliable knowledge 

for scientists of this field and, by this way, to open a 

new door to the world and secrets of oxidants and 

antioxidants in medical science. 
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