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ABSTRACT

Generalized brain atrophy, especially affecting frontal lobes, hippocampus and cerebellum, is frequently observed in alcoholics.
This alteration leads to cognitive dysfunction (that may affect 50-80% of alcoholics, even young people) and altered gait
and movement disorders. Although several factors may contribute, oxidative damage, mainly due to increased production
of reactive oxygen species plays an outstanding role in its pathogenesis, and will be reviewed in this manuscript. Among
them, we can consider mechanisms directly dependent on ethanol metabolism; mechanisms related to increased cytokine
secretion, partly dependent on ethanol-induced increased intestinal permeability, endotoxemia and micro RNA induction;
mechanisms related to ethanol-mediated iron overload; mechanisms related to ethanol-derived toxic lipid synthesis; and
mechanisms related to altered trace element and vitamin concentrations that can affect antioxidant systems. Despite the
role of pro-oxidants, and in contrast with experimental data, no clear-cut benefit has been observed in clinical trials with
antioxidants. Alcohol abstinence, together with adequate nutrition, still constitute the most effective therapeutic approach
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in these patients.

INTRODUCTION

Excessive ethanol intake leads to multisystem complications.
Although liver disease is a hallmark of chronic ethanol
abuse, most heavy alcoholics also show alterations of brain
structure and function, which include a wide spectrum
of organic diseases [1] and functional alterations [2].
Hippocampal atrophy is perhaps one of the most conspicuous
manifestations of heavy alcoholism [3] and hippocampal
damage is frequently provoked by experimental ethanol
administration [4]. Ethanol intake also leads to generalized
cortical atrophy (especially frontal lobe cortical atrophy)
and cerebellar atrophy and this is perhaps pathogenetically
related to hippocampal morphological and functional
derangement given the central role of the hippocampus on
neuronogenesis |5, 6]. These alterations lead to cognitive
dysfunction (that may affect 50-80% of alcoholics) [7]
and altered gait and movement disorders due to cerebellar
alterations (which can be seen in about 42% of non-senile
alcoholics) [8]. Possibly, cerebellum atrophy is also involved
in cognitive and emotional deficiency [9]. Other entities,
such as centropontine myelinolysis [10], Marchiafawa-
Bignami disease [11], thiamine-deficiency derived Wernicke
encephalopathy [12], and/or other vitamin-deficiency states
are common [13]. In this sense, synergistic effects of ethanol,
liver disease and nutritional alterations may be observed
[14]. Overlapping features may occur: many alcoholics with
thiamine deficiency also show cerebellar atrophy, brain
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atrophy and corpus callosum atrophy, without differences
with those with normal thiamine levels [15]. In addition,
alcoholics are prone to suffer ischemic stroke and subdural
and intraparenchymal hemorrhage, which is perhaps also
related to brain atrophy, as we will discuss later. Altered blood
flow [16], which may improve after long-term abstinence
[17], may also contribute to brain atrophy.

Brain atrophy involves both gray matter and white matter.
Gray matter atrophy may be interpreted as the result of an
imbalance between decreased neurogenesis and increased
neuron degeneration. In murine models there is clear-cut
evidence that ethanol alters neuronogenesis [18], a result
in accordance with many observational studies in human
beings [19]. HHowever, other studies argue against this [20].
Impaired neurogenesis primarily affects the hippocampus,
an arca that harbours active neurogenesis [21] during the
whole life span, although maximal activity is observed during
adolescence and young adulthood [22]. This age interval
coincides with that in which binge drinking is more common,
which explains the severe alterations in brain structure and
function observed among adolescent binge drinkers [23].

The mechanisms underlying brain atrophy are only partially
known, although considerable research developed in the
last two decades has shed light on several pathways that
become directly or indirectly altered by ethanol. Most of
these pathways lend support to the conclusion that oxidative
damage plays a main role. In this review we will summarize
some of the recent concepts regarding this topic.
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WHY DOES ETHANOL CAUSE BRAIN DAMAGE
THROUGH OXIDATIVE PATHWAYS?

(I) Increased reactive oxygen species (ROS) production

We can consider mechanisms directly dependent on
cthanol metabolism; mechanisms related to increased
cytokine sccretion, partly dependent on cthanol-induced
increased intestinal permeability, endotoxemia and micro
RNA induction; mechanisms related to ethanol-mediated
iron overload; mechanisms related to ethanol-derived
toxic lipid synthesis; and mechanisms related to altered
trace element and vitamin concentrations that can affect
antioxidant systems (Figure 1). Several other alterations
frequently observed among alcoholics heavily influence these
mechanisms, especially protein-calorie malnutrition [24], the
effect of liver discase [25], hepatic encephalopathy [26], or
that of concurrent tobacco consumption [27]. They will not
be discussed in depth in this review.

Direct effects of ethanol/acetaldehyde
Brain ethanol metabolism and ROS generation

In contrast with previous ideas, it was shown that
acctaldehyde is formed in brain (microglia, astrocytes and
neurons) after ethanol consumption, playing important
roles in the neurobehavioral effects of ethanol [28, 29].
The acetaldehyde that is formed in brain derives mainly
from the activity of catalase and the microsomal fraction
cytochrome P450 2E1 (CYPZEL) [30], a metabolic pathway
strongly activated by chronic ethanol intake [31]. Ethanol
metabolism by CYP2E] is coupled with increased activity
of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, a potent source of ROS [31] that is able to generate
a superoxide anion when an electron is transferred from
NADPII to oxygen. It was shown that ethanol leads to up-
regulation of NADPII oxidase in microglia, neurons, and
astrocytes [32] and that acetaldehyde is directly involved in
this effect [33]. The increased production of ROS associated
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Figure 1. The increased production of reactive oxygen species (ROS)
associated with ethanol intake activates nuclear factor-xB (NF«B)
which activates synthesis of tumor necrosis factor (TNF)-a, which in
turn increases production of ROS.
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with ethanol intake activates nuclear factor-k B (NFkB) [34],
a key transcription factor composed of several subunits
[35] that is heavily involved in pro-inflammatory cytokine
synthesis, especially tumor necrosis factor (TNF)-a [36].

In vitro studies have shown that ethanol is also able to induce
the synthesis of inducible nitric oxide synthase (iNOS) and
cyclooxygenase (COX)-2 enzymatic systems [37], leading to
increased prostaglandin synthesis and inflammation, and to
increased production of highly reactive peroxynitrite which
contributes to oxidative stress. In turn, oxidative stress
increases blood brain barrier permeability [38], and causes
cell injury [39] and mitochondrial alteration [40] that may
exert a negative influence on ROS production . On the other
hand, it is well known that TNF-a is a potent inductor of
ROS generation [41], and, in conjunction with interferon
gamma (IFN-y), also increases the synthesis of reactive
nitrogen species [42]. Therefore, ethanol metabolism itself
is sufficient to cause oxidative stress in the central nervous
system, closing a positive feed-back loop (Figure 2). In
addition, several other mechanisms are involved.

Ethanol and iron excess

Brain iron accumulation may be another important factor
involved in ethanol-mediated brain injury. Hypoxia inducible
factors (HIF) constitute a family of heterodimeric proteins
with two subunits: an oxygen-regulated o subunit (three
different o (termed HIF-la, -2a, -3a) subunits have
been described until now [43]), and a stably expressed f
subunit [44]. Under conditions of normal oxygen tension,
the a subunits are hydroxylated at proline residues.
Proline hydroxylation of the HIF-lo subunit promotes
ubiquitination and its rapid protecosomal degradation [45].
On the contrary, hypoxia inhibits proline hydroxylation,
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Figure 2. Ethanol metabolism is coupled with increased activity of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,
a potent source of reactive oxygen species. Ethanol also activates
the synthesis of inducible nitric oxide synthase (INOS) and
cyclooxygenase (COX)-2 enzymatic systems which also lead to
oxidative damage. Increased gut permeability caused by alcohol
intake leads to the presence of endotoxin in brain which activates
cytokine secretion and NF«B activation. All of this leads to neuro-
inflammation and brain damage.
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favoring coupling of the a subunit with the B subunit and
allowing the heterodimer to bind to the hypoxia-responsive
clement in the promoter regions of the target genes that
code for proteins involved in the adaptive response to

hypoxia [46].

Induction of CYP2EL by chronic alcoholism is accompanied
by an increase in HIF-la expression in relation to the
enhanced oxygen consumption promoted by CYP2EI
activation, as shown by Wang et al [47] using CYP2EI
knock-out and knock-in mice. The increase in HIF promoted
by ethanol metabolism has several consequences: HIF is
involved in the synthesis of pro-inflammatory cytokines such
as TNF-o,, in the synthesis of NO [4§, 49], in the induction
of NADPH oxidase [50], and it also upregulates transferrin
receptor 1 and increases iron cell accumulation [51]. In
addition, interleukin (IL)-6, a cytokine that has been found
increased in inflammatory conditions, enhances expression
of hepcidin, a protein that blocks iron efflux from the cell
[52].

However, this is not the only mechanisms which may lead to
increased brain iron accumulation. After intraparenchymal
hemorrhage, iron concentration increases several fold. This
causes carly edema and subsequent brain atrophy [53].
Patients with alcoholism usually present head injuries of
variable severity, including those that cause intraparenchymal
hemorrhage. In addition, although Marshall et al [54], failed
to find increased permeability of the blood brain barrier in
a 4-day binge drinking model, others did find that ethanol
may induce blood-brain barrier leakage [55], that leads to
extravasation of red blood cells to interstitial tissue, where
they are destroyed, releasing heme and free iron, which in
turn increases ferritin. Free iron is a dangerous compound
that generates ROS and easily causes lipid peroxidation [56,
57], therefore causing further neuronal damage; ROS also
cause a further increase in blood brain barrier permeability.
Regarding the increased ferritin secretion, we have recently
found a direct relationship between ferritin and brain and
cerebellar atrophy in a group of 62 alcoholic patients [58].
Given the lifestyle of many alcoholics, the development
of a recently described degenerative process characterized
by abnormal accumulation of a tau protein is theoretically
possible. The pathogenesis not completely known, and the
discase has been described in athletes and soldiers who
suffer repetitive brain trauma that leads to progressive brain
function impairment [59].

Microglia activation

Chronic ethanol treatment in rats induces microglial
activation [60], especially at the cortex and hippocampal
dentate gyrus. Upon activation, these cells exhibit
morphological changes that evolve in several stages, during
which the cells change their phenotype and function [61].
There is some controversy regarding the consequences of
Oxid Antioxid Med Sci o 2015 e
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such activation. In a binge drinking model, Marshall et al
[54] described that although microglia was activated by
ethanol, activation was only partial, leading to sccretion of
the antiregulatory cytokines [L-10 and transforming growth
factor (TGF)-B, so that the function of microglia activated
at that stage was rather protective than harmful. In contrast,
Drew et al [62] showed in a neonatal murine model that
the addition of ethanol during postnatal days 4 to 9 led to
microglia activation and transformation of the cells into a
pro-inflammatory phenotype, with increased secretion of IL-
18, TNF-a, and MCP-1. Hippocampus and cerebellum were
the most involved arcas. These pro-inflammatory cytokines
and chemokines are all related to generation of more ROS; so
that ethanol-mediated microglia activation also constitutes
a main source of ROS.

The effect of ethanol itself, pro-inflammatory cytokines and
ROS damage brain cells. Several families of sensors become
activated by tissue injury (and/or microbial structures).
Among them, the best known are the toll-like receptors,
located on the surface of the cells, and the nucleotide
binding oligomerization domain (NOD)-like receptors
(NLR), that detect pathogen associated molecular patterns
(PAMPs) or damage associated molecular patterns (DAMPs)
within the cell (in the cytosol). There are several NOD-like
receptors (the best characterized is NLRP3) that can lead
to the formation of inflammasomes, structures composed of
several proteins able to activate caspases, that can be further
classified into pro-inflammatory (for instance, Caspase-1)
or pro-apoptotic. Caspase-1 induce the secretion of pro-
inflammatory cytokines IL-18 and IL-1B. ROS can activate
NLPR3 [63]. In vitro studies have also shown that astrocytes
(especially at the dentate gyrus and corpus callosum) become
activated by ethanol, probably via increased ROS generation
by mitochondria. These astrocytes express enhanced NLPR3
inflammasome, and consecuently, more IL-1f and IL-18,
contributing to increased inflammation, as shown by Guerri’s
group [64]. The same group also reported activation of TLR-
4 directly by ethanol [65]. Strikingly, activation of NLRP3
did not take place in TLR-4 knock-out mice, suggesting
that both sensor systems (TLRs and NLRs) are necessary
to orchestrate an inflammatory response.

Ethanol and cytokine production: direct effects and the gut-
brain axis

As mentioned above, pro-inflammatory cytokines (and also
regulatory ones) are released during ethanol treatment in
many experimental models, and raised levels have been
also reported for alcoholic patients [66-68], also in spinal
fluid [69]. Pro-inflammatory cytokines exert protean
and sometimes antagonistic effects in the inflammatory
response, also including increased ROS generation, so they
are involved in oxidative damage. As mentioned in the
aforementioned studies [64,65], it was shown that ethanol
may directly activate TLR-4, an activation that in turn leads
to increased expression of NFkB (adding to the direct effect
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of ROS) and secretion of pro-inflammatory cytokines, such as
IL-1B, TNF-a, monocyte chemoattractant protein (MCP)-
land IL-6 [70], whereas IL-8 and additional IL-1B derives
from activation of NLRP3. Morcover, in an experimental
in vitro model, Davis and Syapin [71] showed that ethanol
potentiates the induction of NF«kB mediated by cytokines.
Ethanol consumption leads to a greater binding of NFxB to
DNA, therefore favoring transcription of pro-inflammatory
agents, and a reduced binding of the pro-survival, anti-
apoptotic transcription factor c-AMP responsive element-
binding protein (CREB) to DNA, coinciding with ethanol
activation of oxidative stress [72]. CREB immunoreactivity
shows a dramatic increase in dentate gyrus after 72 h of
abstinence in experimental murine models [73].

As explained above, there is a local brain production of
cytokines, and consequently ROS, but there are at least
two additional mechanisms that contribute to a marked
inflammatory effect in brain tissue in alcoholics. One of
these mechanisms is related to direct activation of TLR-4
by (gut-derived) lipopolysaccharide, and a second one, from
the effect of cytokines produced in distant organs that are
transported to brain. These cytokines are able to cross the
blood brain barrier [74] and to stimulate brain endothelial
cells to produce additional cytokines [75].

Intestinal lumen harbors a great amount of Gram-negative
bacteria. In normal conditions, they cross the colonic
mucosa, both by receptor-mediated endocytosis and
incorporated in chylomicrons [76]. This phenomenon is
highly enhanced in several common discases, notably heart
failure [77], type 1 diabetes (perhaps even as a pathogenetic
factor)[78], or hepatitis C virus disease [79] and among
alcoholics [80]. Ethanol and, especially, acetaldehyde alter
tight junctions in the intestinal mucosa, and also lead
to bacterial overgrowth in the intestinal lumen [81]. An
increased amount of circulating lipopolysaccharide further
increases intestinal permeability [82]. Alterations in portal
hemodynamics when liver disease ensues enhances this
process [83]. Therefore, lipopolysaccharide reaches the
portal vein and activates Kupffer cells, leading to cytokine
secretion and triggering an inflammatory cascade of events
that cause liver damage. The increased gut permeability,
and the development of porto-systemic shunts when liver
discase evolves, may overwhelm the Kuptfer system, and
lipopolysaccharide may enter the systemic circulation [84]
and reach the brain. In the brain, endotoxin is recognized
by the TLR-4, activating the NI'kB cascade and leading to
cytokine secretion, and ROS production. These alterations
cause neuro-inflammation, and also inhibit hippocampal
neurogenesis [86]. In a classic study, Oin et al [87] showed
that systemic lipopolysaccharide administration caused a
marked increase in brain TNF-a levels that remained high for
10 months leading to activation of microglia and increased
expression of pro-inflammatory factors. Pre-treatment with
ethanol markedly potentiates the effect of endotoxin on
brain TNF-a,, MCP-1 and I1L-1B secretion [85]. Other TLRs,
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such as TLR-3 also become activated. In summary, this
cascade of events finally leads to increased ROS production,
especially in microglia and neurons of dentate gyrus and
cortex, neuro-inflammation and neuro-degeneration, and
is potentiated in binge drinking models [88].

At least in the liver there is an interaction between CYP2EL,
lipopolysaccaride, and TNF-a, ROS derived from induction
of CYP2E] potentiate the harmful effects of the other two
compounds [89]. In any case, the main ROS generated
by this pathway include hydrogen peroxide and the anion
superoxide [90]. When free iron is also present, more active
ROS metabolites are formed, including hydroxyl radical and
hydroxyethyl radicals [91]. MDA also increases [92] offering
a substrate to form adducts, especially if antioxidants systems
fail. Thus, these two last mechanisms may contribute to a
more severe ROS derived lesion.

Micro RNA-associated oxidative stress

Considerable research has recently focused on the role of
microRNAs in the inflammatory response, since it scems
that they may modulate inflammation. The main target is
attenuation of NF«B signaling. Indeed, certain micro(mi)
RNAs negatively regulate this transcription factor, at least
in endothelial cells, by targeting of TRAF6 and IRAKI,
adaptor proteins acting in the metabolic pathway upstream
of NIF'kB [93]. MiRNAs may also constitute key regulators
of the blood-brain barrier function [94]. Some controversy
exists regarding the effects of miRNAs on ethanol-induced
brain inflammation: whereas Zhang et al [95] described
an inhibition of the expression of proinflammatory factors
in an in vitro study by miRNA-339-5p, others have shown
that ethanol may induce (a different) miRNA production
(miRNA-155) in the cerebellum, in a TLR-4 dependent
fashion. This induction would lead to increased TNF- o and
MCP-1 secretion by cerebellar microglia [96].

Toxic lipids: the liver-brain axis

An interesting field connecting brain damage and liver
alterations resides in the potential effects of products derived
from liver steatosis on brain function. Increased lipolysis and
enhanced fat synthesis mediated by ethanol, together with
impaired secretion of fat droplets lead to liver steatosis that
may evolve to steatohepatitis. Excessive metabolism of lipids
within the hepatocyte may cause stress in the endoplasmic
reticulum, mainly due to excessive ROS formation. During
lipolysis and sphingomyelin degradation, ceramide is formed
and passes into bloodstream. It reaches the central nervous
system, where it is able to cause insulin resistance by blocking
phosphorylation events in the downstream insulin receptor
signaling system [97], and activating pro-inflammatory
cytokines [98]. In vitro studies have shown that liver
derived ceramides are able to increase 4-hydroxynonenal
and ubiquitin immunoreactivity in cultured neuronal cells
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[99]. Even more, it seems that exogenous, liver derived
ceramide can cause an increase in brain gene expression of
ceramide genes.

In addition, ethanol alters the structure and permeability
of cell membranes and its receptors, and this also affects
insulin and insulin-like growth factor receptors in diverse
arcas of the central nervous system, as shown in a murine
model by Cohen et al [100]. Probably, impaired receptor
function was related to oxidative stress: loss of receptor
expression was associated with neuronal loss and increased
brain NADPH oxidase expression and altered acetylcholine
metabolism [101].

Therefore, several mechanisms lead to increased production
of harmful ROS. This increased production is not
counteracted by an increase in antioxidant systems. On
the contrary, ethanol and, especially, nutritional and liver
alterations commonly observed in alcoholics strongly
contribute to altered antioxidant defense. Some of these
alterations will be discussed briefly below.

(IT) Decreased antioxidant activity

Antioxidant systems include enzymatic pathways located
within the cell and circulating molecules. Superoxide
dismutases (SOD) are able to remove superoxide anion and
transform it into the less toxic hydrogen peroxide [102].
Catalase and glutathione peroxidase (GPx) remove hydrogen
peroxide; as mentioned above, ferritin, together with other
molecules such as heme-oxygenase and ceruloplasmin are
involved in removal of iron [103-105], and several other
compounds including thioredoxin, glutathione transferase,
metallothioneins, uric acid, bilirubin and several trace
elements may also act as antioxidants [57], especially
zinc (Zn), selenium (Se) and manganese (Mn), primarily
as essential cofactors of antioxidant enzymes, and the
antioxidant vitamins. There is some discrepancy regarding
the effects of ethanol on enzyme activity. For instance,
Bagheri et al [106] showed that acute ethanol administration
reduced SOD significantly, whereas chronic intake increased
it; they failed to find alterations in GPx, whereas catalase
levels were decreased. In contrast, Ramezani et al [107]
report a decrease in GPx, whereas no differences existed in
SOD or catalase. On the other hand, Ibrahim et al [108]
did find significant differences in these enzymes. Nordman
et al [109] already stated that antioxidants were deficient
in alcoholics, with SOD, alpha-tocopherol, ascorbate and
selenium probably contributing to cerebellar oxidative stress
and brain damage [110].

Many of the alterations in circulating antioxidants observed
in alcoholics are not due to the effect of ethanol itself, but to
associated conditions frequently observed in these patients,
especially nutritional deficiency (for example, in the case
of niacin deficiency) or liver disease (in the case of vitamin
K). The unconventional lifestyle of many alcoholics, with
impaired nutritional intake, probably leads to poor intake
Oxid Antioxid Med Sci o 2015 e

Volume 4 e Issue 2

Gonzalez-Reimers et al: Oxidative damage and brain atrophy

of many micronutrients, including trace elements, dictary
antioxidants and vitamins. Therefore, pathogenesis of the
eventual brain alterations suffered by these patients is
multifactorial. It is out of the scope of this study to review
in detail the antioxidant effect of cach dictary antioxidant,
vitamin, or trace element. Instead, we will discuss briefly
the potential beneficial effects, due to its antioxidant
properties, of some vitamins usually determined in the
laboratory evaluation of the alcoholic patient, such as vitamin
E, vitamin A, vitamin D, homocysteine, ascorbic acid and
thiamine deficiency.

Vitamin E deficiency

Low levels of vitamin E have been described in alcoholics
[111]. Malabsorption and poor nutrition and, perhaps,
an increased demand of vitamin E by the liver [112, 113]
may all contribute to this deficiency. The main effect of
vitamin E is the protection of membrane phospholipids
and polyunsaturated fatty acids from oxidation. Perhaps
these mechanisms explain the protective effect against
hippocampal apoptosis induced by a high cholesterol diet
[114] against Alzheimer disease, as shown by Giraldo et
al [115] both in in vitro studies and in transgenic mice,
or the memory impairment observed with a high fat,
high carbohydrate diet [116], among many other studies
[117]. Apoptosis and deposit of B amyloid proteins take
place in vitamin E deficient animals, especially affecting
CA-1 pyramidal hippocampal cells [118]. Hippocampal
necuronal damage was preceded by an alteration of collapsin
response mediator protein 2 (CRMP-2), a cytoplasmic
protein involved in normal axonal function, and enhanced
expression of microtubule associated protein-light chain
3 (MAP-LC3), an autophagy-related protein, in possible
relation to increased oxidative damage [119], leading to
axonal dysfunction. A deleterious effect on Purkinje cells was
also described [120]. In ethanol murine models Shirpoor et
al [121] showed that vitamin E supplementation reverted
the severe alterations observed especially in cerebellum
and hippocampus in offspring’s of Wistar rats treated with
cthanol. A similar conclusion was obtained by Marino ct
al [122] who showed a partial recovery of the lack of CA-1
pyramidal cells observed in ethanol-treated pups.

Vitamin A deficiency

Although some studies show that vitamin A may exert
some pro-oxidant effects [123], carotenoids also protect
unsaturated fatty acids from oxidative damage [124], and
therefore, vitamin A deficiency may be involved in brain
alterations. In a similar fashion to what was observed with
tocopherol deficiency, reduced hippocampal neurogenesis
has been reported by several groups accompanied by
functional impairment [125, 126], especially affecting
memory and spatial learning. Hippocampal and functional
recovery was achieved, at least partially, with vitamin A
supplementation [127]. In alcoholics, vitamin levels are low
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due to malnutrition and malabsorption [128]. In chronic
alcoholics with strong microsomal induction, accelerated
vitamin A catabolism also plays a role in low vitamin
levels [129]. In human beings there are data that support
a relationship between cognitive impairment and vitamin
A deficiency [130], and alcoholics with cerebellar atrophy
showed lower serum vitamin A [131].

Vitamin D deficiency

It has been recently shown that vitamin D may act as
an antioxidant in brain [132]. Vitamin D is essential in
maintaining the adequate levels of calcium within the cells.
An excess of calcium within the nerve cell contributes to
excitotoxicity and increased generation of ROS [133]. In
addition, it was observed that vitamin D supplementation
(at low doses) increases neuronal glutathione levels, an
effect that strongly supports an antioxidant role of the
vitamin [134]. Finally, vitamin D inhibits NO synthase,
which might be responsible for an increase in peroxinitrite
production, lending support to its role against oxidative
damage; it also acts as an anti-inflammatory agent,
inhibiting microglial production of TNF-o and IL-6 [135].
Several clinical observations agree with these effects: it
seems that individuals with lower vitamin D levels showed
cognitive impairment compared with those with normal
vitamin D levels [136,137]. Moreover, vitamin D is involved
in brain development [138] and vitamin D receptors
have been identified in brain [139]. In alcoholics, renal
metabolism may be diverted to the synthesis of the less
active 24,25dihydroxyvitamin D [140]. This fact, together
with nutritional disturbances, malabsorption and decreased
sun exposure may explain the frequently observed low
vitamin D levels in alcoholics [141] which might a play a
role in brain oxidative damage.

Vitamin B12 alterations; hyperhomocysteinaemia

Cyanocobalamin deficiency is associated with brain atrophy
[142], demyelination [143] and cognitive impairment
[144], although probably, the relationship between vitamin
B12 and cognitive impairment fits better with a U-shaped
curve [145]. Moreover, in demyelination associated with
vitamin B12 deficiency, increased TNF-a and IL-6 values
have been reported, linking B12 deficiency to neuro-
inflammation [146].

One of the consequences of vitamin B12 deficiency is
hyperhomocysteinemia. Raised levels of homocysteine have
been reported in alcoholics, but often without relation to
B12levels, but with those of folate or riboflavin [147]. In fact,
in alcoholic patients with cirrhosis, vitamin B12 levels are
frequently high, but despite this, homocysteine levels may
be also raised [148]. In any case, hyperhomocysteinemia is
related to hippocampal alterations [149, 150] and cognitive
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impairment [151], possibly in association with oxidative
damage, given its ability to down-regulate glutathione
peroxidase [152].

Vitamin C deficiency

Ascorbic acid acts as a scavenger of ROS: it oxidizes to
monodchydroascorbic acid and dihydroascorbic acid [153],
that are later deoxidized by the glutathione reductase
activity, linking its function to selenium stores, which are
low in alcoholics [154]. Although decreased vitamin C
levels have been reported in patients with dementia [155],
its role in brain atrophy in alcoholics is unclear. However,
experimental data do support a beneficial effect on ethanol
induced hippocampal neurodegeneration, [156, 157].

Thiamine deficiency and Wernicke encephalopathy

Thiamine deficiency leads to the so called Wernicke-
Korsakoff encephalopathy, an acute situation suffered
by alcoholics with variable degree of previous brain
alterations. It is heavily dependent on oxidative damage,
and possibly, thiamine deficiency exerts a synergistic effect
with ethanol, at least regarding white matter shrinkage (for
instance, atrophy of corpus callosum [158]) or cerebellar
atrophy [159]. Thiamine deficiency is very common in
alcoholics with prevalence ranging from 29.7% [160] to
more than 50%, depending on diagnostic criteria utilized
[161]. Inadequate intake, impaired absorption, a reduced
liver storage, and decreased transformation of thiamine
in its active form account for this deficiency among
alcoholics. Several enzymes become affected in thiamine
deficiency, the most important including pyruvate
dehydrogenase, transketolase; a-ketoacid decarboxylase;
and o-ketoglutarate dehydrogenase [162]. The impaired
function of these enzymes leads to increased ROS
production and further damage to mitochondria. ROS
promote increased expression of nitric oxide synthase,
and also an increase in blood brain barrier permeability,
allowing iron to escape to the interstitium, and the already
commented generation of a more intense oxidative damage
and enhanced ROS formation. Therefore, in thiamine
deficiency, oxidative damage plays an important role.
The increased blood brain barrier permeability also leads
to brain edema [163] which is reversible after thiamine
supplementation. The impossibility to convert pyruvate to
acetyl coenzyme A leads to lactic acidosis that also causes
cytotoxic cerebral edema and induce neuronal death [164].
Increased ROS probably mediates glutamate mediated
excitotoxicity, altering the function of complexins,
proteins that regulate neurotransmitter release [165]. In
addition, thiamine deficiency is accompanied by increased
transcription of genes coding for pro-inflammatory
cytokines and chemokines [166]. All these events may
explain the stupor and coma characteristic of Wernicke
encephalopathy, together with cerebellar alterations
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and ophthalmoplegia, and the related manifestations of
Korsakoff’s dementia. As shown, thiamine deficiency shares
some metabolic alterations with ethanol intake.

FUNCTIONAL CONSEQUENCES

Ethanol interacts with microtubule formation, a process
that is crucial for neuronogenesis, synaptogenesis and
cell migration [167]. Ethanol causes DNA oxidation
which impairs learning in rats [168]; and, as shown, lipid
peroxidation and an inflammatory response. All of these
consequences lead to increased neuronal death and
decreased neurogenesis. TNF-o potentiates glutamate
excitotoxicity, linked to excessive glutamate activation of
N-methyl-D-aspartate (NMDA) receptor. TNF-a reduces
glial glutamate transporter activity and thus may also play a
role in neurodegeneration. Increased glutamate is related to
an increased desire to consume ethanol. Therefore, increased
TNF-o would be related not only to brain damage, but also
to alcohol dependence [169]. Binge drinking impairs memory
and learning. This effect is more intense when alcohol is
consumed during adolescence, just when binge drinking is
more common [170]. In addition, disruption of executive
frontal cortical function leads to impulsive behavior and
loss of control, creating an impossibility to cut with alcohol
consumption. Indeed, brain atrophy may predict future
relapse in drinking habits: future relapsers showed smaller
brain volumes in orbitofrontal cortex and surrounding white
matter than no relapsers [171].

POTENTIAL THERAPIES FOR ALCOHOL-
MEDIATED BRAIN ATROPHY

As discussed previously, brain atrophy induced by alcohol
is due to several factors. While cthanol itself has a direct
toxic effect on the brain, other factors that arise from
alcohol exposure can also lead to brain atrophy. These
factors include increased cytokine secretion, increased
intestinal permeability with subsequent LPS-induced
endotoxemia, the induction of miRNA iron overload in brain
cells, membrane lipid peroxidation, and vitamin and trace
clement deficiencies. Several strategies that target each step
in neurodegeneration have been studied in animal models
of alcoholism. These have also been studied in models of
traumatic brain injury in which oxidative damage and lipid
peroxidation also play a major role. However, just as in
traumatic brain injury, the effectiveness of antioxidants in
alcohol-induced brain damage has been mostly studied in
animal models. Therefore, clinical trials are needed in which
factors such as doses and toxicity are taken into account
[172]. In addition to thosc already cited previously, some
other studies will be commented below.

ROS scavengers and inhibition of lipid peroxidation

Tiwari and Chopra [173] have studied the use of curcumin,
the active ingredient in turmeric, in the treatment of chronic
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cognitive dysfunction in rats that were exposed to ethanol.
The use of curcumin prevented cognitive alterations by
inhibiting the activation of inflammatory signaling pathways
mediated by oxidative stress. The authors consider that
curcumin could be potentially useful in alcoholic patients
with cognitive dysfunction. In another study, Tiwari and
Chopra [174] have also studied the use of other components
found in fruits and vegetables in the prevention of alcohol-
induced brain atrophy. They studied the effect of resveratrol,
a phytoalexin found in the skin of red grapes, in the
prevention of cognitive deficits induced by chronic alcohol
exposure. Once again, they found that resveratrol prevented
cognitive dysfunction and this was also mediated by the
modulation of oxidative stress.

Skrzydlewska et al [175] studied the effect of green tea,
which contains antioxidants called catechins, in rats that
were chronically exposed to ethanol; they found that green
tea protects cell membranes from lipid peroxidation and
prevents the decrease of antioxidant activity. Luczaj et
al [176] also studied the effect of black tea; they found
that black tea prevented the detrimental effects of alcohol
exposure in antioxidant activity in rats.

Protective effects of iron chelators

As mentioned above, iron overload in brain cells may be
an important factor in cthanol-induced brain damage.
The effect of iron chelators on alcoholic liver discase has
been studied by Xiao et al [177]; they found that an iron
chelator called M30 reduced ethanol-induced cell death
and decreased production of ROS and pro-inflammatory
cytokines. In a recent study by Zhang et al [178], it was
shown that pretreatment of rats with the iron chelator
deferoxamine attenuated the cognitive deficits induced by
lipopolysacharide administration.

Vitamin and trace element supplementation

Tiwari et al [179] have shown that the administration of two
isoforms of vitamin E (alpha-tocopherol and tocotrienol)
to rats who were chronically exposed to ethanol prevented
deficits in learning and behavior. However, they found
that tocotrienol was more potent in preventing cognitive
dysfunction. They attribute the differences between isoforms
to the fact that tocotrienols have a better distribution in
tissues such as brain and liver due to its unsaturated side
chain. They suggest that vitamin E could be useful in treating
patients with alcohol-induced cognitive dysfunction.

A class of antioxidants called lazaroids have been known
for protecting cells from oxidative damage. A vitamin E
derivative called U-83836E reduced lipid peroxidation in
an animal model of myocardial ischemia/reperfusion injury
[180]. However, Huang et al [181] have pointed out that
lazaroid compounds are unable to modulate the late stages
of cell injury and this may explain why lazaroids have not
been effective in clinical and in vivo studies. In fact, Grisel
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et al [182] studied the effect of U-83836F. on cerebellar
Purkinje cell injury in developing rat pups exposed to alcohol;
they found that the antioxidant did not reduce the adverse
effects on Purkinje cells.

Regarding trace elements, Menzano and Carlen [183] suggest
that zinc supplementation can be used in the treatment of
alcoholic encephalopathy due to the fact that zinc deficiency
increases free radical formation and subsequently leads to
neuronal injury. However, a study by Chen et al [184] showed
that zinc supplementation in neonatal rats did not reduce
cerebellar Purkinje cell loss induced by alcohol.

CONCLUSION

This review illustrates the main mechanisms by which
ethanol ingestion alters brain structure and function.
Confluence of several pathways, some of them closing
positive feedback loops explain the devastating cffects of
chronic and binge ethanol consumption often exacerbated
by nutritional alterations that impair antioxidant defensive
mechanisms. Brain atrophy and ethanol-related brain
dysfunction improve with ethanol abstinence. Alcohol
abstinence, together with adequate nutrition, constitute
the most effective therapeutic approach in these patients.
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