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Abstract 

Although oxidative stress is generally considered to be caused by reactive oxygen species 

endowed with electrophilic properties, non-oxidizing free radicals also play a role in 
numerous degenerative diseases. The most biologically active is hydroxyl radical known to 

be produced in vivo under hypoxic conditions. In addition, as shown in this paper, hydroxyl 

radicals can be generated in vitro in the presence of ferric ions without any additional redox 
agents. This free radical can convert soluble human fibrinogen into an insoluble fibrin-like 

aggregate. It is argued that this novel phenomenon can explain the in vivo association of iron 

overload with fibrin-like deposits observed in degenerative diseases. In view of the fact that 
hydroxyl radials are also formed under the reductive conditions, true antioxidants i.e. 

reducing substances, may enhance rather than diminish free radical stress. On the other hand, 

numerous natural substances, such as polyphenols considered to be antioxidants, can reduce 
free radical stress by virtue of their direct scavenging of hydroxyl radicals and/or chelation of 

body free iron. In conclusion, it is suggested in this overview to revise the concept of 

oxidative stress and introduce a more adequate term of free radical stress. 
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INTRODUCTION 

The concept of oxidative stress is widely accepted by 

medical community all over the world [1], which has 

led some people to believe that too much oxygen can 

be harmful, despite epidemiological evidence to the 

contrary. Thus, a group of Italian scientists have 

documented that death rate of all diseases was 

negatively correlated with vital capacity, which 

determines the amount of oxygen taken up with 

breathing [2]. Exaggerated fear of oxygenation is 

reinforced by studies, which have demonstrated that 

numerous degenerative diseases are associated with 

excessive generation of reactive oxygen species (ROS). 

Regrettably, it is being forgotten that not all ROS are 

oxidants and that biomolecules can be enriched in 

oxygen atoms by reactions different than oxidation. For 

example, the biologically most reactive hydroxyl 

radical can modify proteins, lipids and nucleic acids by 

the reductive addition of oxygen-carrying hydroxyl 

groups [3-7]. 

However, the widespread use of an oxidizing agent 

(hydrogen peroxide) for the in vitro generation of 

hydroxyl radicals in the Fenton reaction has reinforced 

the notion of oxidative stress as a culprit of human 

pathologies. This simplistic conclusion has not been 

disturbed by the fact that hydroxyl radicals are also 

effectively formed under the reducing conditions  

[8-10]. 

Iron, hydroxyl radicals and fibrinogen 

My interest in biological effects of free radicals 

stemmed from my over a half century involvement in 

the research on pathophysiological significance of 

blood coagulation and fibrinolysis [11, 12]. Although it 

is well known that the enzymatically generated fibrin is 

associated with thrombosis, there is no adequate 

explanation why fibrin-like deposits remain persistent 

in chronic degenerative diseases. An idea had occurred 

to me after I have read the paper by Marx and Chevion 

[13] describing the formation of a fibrin-like aggregate 

in the presence of transition metal (copper) ions and 

ascorbic acid. I have then observed that such a fibrin-

like aggregate can be generated in physiological 

solutions by another transition metal iron, without any 

redox agent whatsoever. Consequently I have 
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demonstrated that iron-induced fibrous polymer is 

remarkably resistant to fibrinolytic degradation, a 

phenomenon that was suggested to explain 

thrombolytic resistance in patients with heart attacks 

and strokes [14]. 

This finding corroborates the results obtained by Eckly 

et al [15] demonstrating that ferric chloride induces 

thrombosis in vivo. Non-enzymatic formation of fibrin-

like aggregates may also explain the presence of 

insoluble fibrin(ogen) antigens in patients not only with 

atherosclerosis [16, 17] but with other degenerative 

diseases [18, 19]. It is of interest to note that hydroxyl 

radicals can also modify other proteins, e.g. 

immunoglobulin G, endowing it with new antigenic 

properties [20]. Similarly to fibrinogen, the mechanism 

of action of hydroxyl radicals in this case is based on a 

limited reduction of intra-molecular disulfide bonds 

with a subsequent exposure of buried antigenic 

epitopes (neo-antigens)[21]. 

Iron overload and degenerative disease 

There is a plethora of evidence, albeit not well 

recognized, indicating the relationship between body 

iron overload and the degenerative diseases. These 

pathologic conditions include thrombosis [22], 

atherosclerosis [23], Parkinson’s and Alzheimer's 

diseases [24], cancer [25], age-related degenerations 

[26], kidney diseases [27] and neurological disorders 

[28, 29]. It should be noted that an abundant source of 

redox active iron is heme, which is released from 

oxidized hemoglobin [30]. In view of the fact that free 

iron leads to the formation of hydroxyl radicals in vivo 

[9, 31-33] it can be argued that the presence of fibrin-

like deposits found in these pathologies represent 

modified fibrinogen as recently demonstrated by means 

of scanning electron microscopy [34]. This notion is 

supported by the fact that degenerative diseases can be 

prevented by certain natural products, specifically 

polyphenols that scavenge free radicals and chelate 

trivalent iron [35-38].  

What is an antioxidant? 

Closely associated with the concept of oxidative stress 

is a definition of an antioxidant [39]. From the 

electrochemical point of view an antioxidant must be a 

reducing agent such as ascorbic acid, and/or vitamin E. 

Yet clinical trials with these substances generally failed 

to produce the expected health benefits [40, 41]. At the 

same time other agents, such as polyphenols that are 

not reducing agents, have been shown to prevent and 

alleviate many pathological conditions [42-54]. It is 

important to note that the chemical structure of 

polyphenols warrants their potential for scavenging 

hydroxyl radicals by so-called aromatic hydroxylation, 

first described for salicylic acid and its derivatives [55]. 

A confusion existing in a definition of an antioxidant is 

exemplified by a paper of Perron and Brumaghim [56], 

in which the authors classify polyphenols as 

antioxidants, despite showing that their effect depends 

on the iron chelation activity.   

It is also worth noting that health beneficial effects of 

extra virgin oil may be explained by the presence of 

tyrosol constituting over 30 percent of all olive oil 

polyphenols [57]. This compound has two ortho 

positions in its phenol ring available for aromatic 

scavenging of hydroxyl radicals. Reaction between 

these free radicals with polyphenols, as well as their 

capacity to chelate transition metals, was argued to be 

responsible for medicinal properties of Micromeria 

plant species from Croatia [58]. Methylene blue which 

effectively shuttles electrons between NADH and 

cytochrome c, was recently reported by Wen et al to act 

as a neuroprotective agent [59]. Mechanism of action 

of this heterocyclic compound can also be explained in 

terms of the neutralization of hydroxyl radicals by 

virtue of aromatic hydroxylation. In addition, pro-

oxidant properties of polyphenols, combined with their 

interaction with iron, were suggested to contribute to 

the improvement of health of Mediterranean diet in 

patients with myocardial infarction [60]. Vitamins B1 

and B6, although different from polyphenols, were 

shown to protect against oxidative stress by virtue of 

their iron-chelating capacity [61]. 

There have recently been a series of papers that 

critically evaluate the concept of antioxidants. For 

example, Tirzitis and Bartosz [62] suggested that so 

called antioxidant hypothesis should be considered as 

an intellectual ‘shortcut’. These authors have 

emphasized that there is a great difference between 

”antiradical” and “antioxidant” activity, and that true 

radical scavenging property of a given substance 

should be tested utilizing hydroxyl radicals generated 

in the Fenton reaction. This statement is particularly 

significant in view of the fact that the hydroxyl radical 

is biologically the most reactive species and that its 

properties depend on the redox milieu of a given 

biological system [63]. Moreover, scavenging of 

hydroxyl radicals by phenolic compounds may simply 

occur by a chemical addition of a hydroxyl group to 

their aromatic rings without changing their redox 

potential. Such is the case with the deoxyribose 

degradation assay, which is incorrectly classified as a 

test for measuring antioxidant activity [64]. Obrenovich 

et al [65] in their seminal paper have stated that ‘we 

should not consider all antioxidant compounds as 

having the same mechanism of action’, which is 

particularly true in view of their iron chelating 

capacity. Finally, as recently emphasized by Halliwell 

[66] the in vitro tests for evaluation of the effectiveness 

of antioxidants can lead to artefactual data.   
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CONCLUSIONS 

One may argue, however, that it does not matter 

whether a given substance is considered an antioxidant 

or pro-oxidant, as long as it provides benefits to human 

health. Yet the problem arises when we start to search 

for new therapeutic compounds and substances. If we 

accept the concept of an antioxidant as a reducing 

agent, than we will miss all those whose mechanism of 

action is based on the scavenging of hydroxyl radicals 

and/or iron chelation. Moreover, numerous powerful 

phytochemical therapeutic agents may never be 

discovered just because they are being screened with 

methods using ascorbic acid as a standard antioxidant. 

Brighelius-Flohe [67] has recently stated: “It is 

dangerous to classify a xenobiotic as an antioxidant by 

means of an in vitro test and to continue divide 

chemicals into antioxidants and oxidants.” In this 

context it is important to note that polyphenolic 

substances have been shown by some researchers to be 

not antioxidants, but pro-oxidants [68, 69]. 

According to Prof. Sies, we should not assume that the 

measuring total antioxidant capacity in a test tube 

reflects its status in whole body [70]. Relevant to the 

present article is his statement that ‘we also should 

consider polyphenols in food beyond their antioxidant 

activity’. In conclusion, it becomes obvious that the 

concept of oxidative stress is not only inadequate, but 

have negative consequences to human health, 

particularly in diseases associated with chronic hypoxia 

and iron overload. In such situations administration of 

true antioxidants (reducing agents) may be like trying 

to extinguish fire with more fuel. Therefore, it is 

essential that the concept of oxidative stress should be 

objectively evaluated and properly redefined according 

to the principles of electrochemistry. 
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