ISSN 2146-8389
 

Review Article Open Access


Oxidative stress: production in several processes and organelles during Plasmodium sp development

Josefina Duran-Bedolla, Mario Henry Rodriguez, Vianey Saldana-Navor, Selva Rivas-Arancibia, Marco Cerbon, Maria Carmen Rodriguez.

Cited by (5)

Abstract
Worldwide, malaria parasites are increasingly resistant to available antimalarial drugs, which difficult treatment and control. Alternative drugs could exploit the differences between the hosts and parasite responses to reactive oxygen and nitrogen species. Malaria parasites (Plasmodium sp) are exposed to oxidative stress as a result of their metabolic processes and their hosts’ responses to infection, both in vertebrate hosts and vector mosquitoes. Host erythrocyte hemoglobin digestion and heme production within food vacuoles and the synthesis and folding of proteins within the endoplasmic reticulum, as well as the production of the needed energy in the mitochondria are the main sources of oxidative stress. Parasites maintain the redox equilibrium with antioxidant systems (i.e. glutathione-thioredoxin). In this brief review, we discuss the most important processes involved in the production of high levels of free radicals during Plasmodium sp development, along with the parasite’s protective responses and the strategic differences with the vertebrate hosts that are useful for specific antiparasitic drug design.

Key words: Antioxidant response; Oxidative stress; Plasmodium


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Josefina Duran-Bedolla
Articles by Mario Henry Rodriguez
Articles by Vianey Saldana-Navor
Articles by Selva Rivas-Arancibia
Articles by Marco Cerbon
Articles by Maria Carmen Rodriguez
on Google
on Google Scholar
Article Statistics
 Viewed: 3432
Downloaded: 848
Cited: 5

REFERENCES
1.World Health Organization. World Malaria Day 2012; Test, Treat, Track: scaling up the fight against malaria, Available via http://www.who.int/mediacentre/news/releases/2012/malaria_20120424/en/ (Accessed 22 May 2013).


2.Linares GE, Rodriguez JB. Current status and progresses made in malaria chemotherapy. Curr Med Chem 2007; 14:289-314.

http://dx.doi.org/10.2174/092986707779941096

[
Pubmed]   


3.Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res C Embryo Today 2006; 78:333-44.

http://dx.doi.org/10.1002/bdrc.20083

[
Pubmed]   


4.Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal 2007; 19:672-82.

http://dx.doi.org/10.1016/j.cellsig.2006.11.009

[
Pubmed]   


5.Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78:547-81.

[
Pubmed]   


6.Gonzalvez F, Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis 2007; 12:877-85.

http://dx.doi.org/10.1007/s10495-007-0718-8

[
Pubmed]   


7.Dey S, Guha M, Alam A, Goyal M, Bindu S, Pal C, Maity P, Mitra K, Bandyopadhyay U. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic Biol Med 2009; 46:271-81.

http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.032

[
Pubmed]   


8.Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes--requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 2002; 115:1175-88.

[
Pubmed]   


9.Nakagawa Y. Initiation of apoptotic signal by the peroxidation of cardiolipin of mitochondria. Ann N Y Acad Sci 2004; 1011:177-84.

http://dx.doi.org/10.1196/annals.1293.018

[
Pubmed]   


10.Ott M, Zhivotovsky B, Orrenius S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 2007; 14:1243-7.

http://dx.doi.org/10.1038/sj.cdd.4402135

[
Pubmed]   


11.Sinden RE, Canning EU, Bray RS, Smalley ME. Gametocyte and gamete development in Plasmodium falciparum. Proc R Soc Lond B Biol Sci 1978; 201:375-99.

http://dx.doi.org/10.1098/rspb.1978.0051

[
Pubmed]   


12.Gilles, HM. The malaria parasites. In: Gilles HM, Warrell DA (eds) Bruce-Chwatts: Essential Malariology, Edward Arnold, London, UK, pp 12-34, 1993.


13.Kobayashi T, Sato S, Takamiya S, Komaki-Yasuda K, Yano K, Hirata A, Onitsuka I, Hata M, Mi-ichi F, Tanaka T, Hase T, Miyajima A, Kawazu S, Watanabe Y, Kita K. Mitochondria and apicoplast of Plasmodium falciparum: behaviour on subcellular fractionation and the implication. Mitochondrion 2007; 7:125-32.

http://dx.doi.org/10.1016/j.mito.2006.11.021

[
Pubmed]   


14.Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 2011; 9:e1001138.

http://dx.doi.org/10.1371/journal.pbio.1001138

[
Pubmed]    [PMC Free Fulltext]   


15.Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004; 129:511-24.

http://dx.doi.org/10.1017/S0031182004005888

[
Pubmed]   


16.Clark AG. The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol B 1989; 92:419-46.

http://dx.doi.org/10.1016/0305-0491(89)90114-4

[
Pubmed]   


17.Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J 2006; 20:1224-6.

http://dx.doi.org/10.1096/fj.05-5338fje

[
Pubmed]   


18.Siddiqi NJ, Puri SK, Dutta GP, Maheshwari RK, Pandey VC. Studies on hepatic oxidative stress and antioxidant defence system during chloroquine/poly ICLC treatment of Plasmodium yoelii nigeriensis infected mice. Mol Cell Biochem 1999; 194:179-83.

http://dx.doi.org/10.1023/A:1006919320803

[
Pubmed]   


19.Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 2004; 34:163-89.

http://dx.doi.org/10.1016/j.ijpara.2003.09.011

[
Pubmed]   


20.Halliwell B, Gutteridge JM. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1984; 1:1396-7.

http://dx.doi.org/10.1016/S0140-6736(84)91886-5

[
Pubmed]   


21.Muller S. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 2004; 53:1291-305.

http://dx.doi.org/10.1111/j.1365-2958.2004.04257.x

[
Pubmed]   


22.Sherman IW. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ 1977; 55:265-76.

[
Pubmed]    [PMC Free Fulltext]   


23.Orjih AU. On the mechanism of hemozoin production in malaria parasites: activated erythrocyte membranes promote beta-hematin synthesis. Exp Biol Med (Maywood) 2001; 226:746-52.

[
Pubmed]   


24.Meunier B, Robert A. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res 2010; 43:1444-51.

http://dx.doi.org/10.1021/ar100070k

[
Pubmed]   


25.Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett 2005; 157:175-88.

http://dx.doi.org/10.1016/j.toxlet.2005.03.004

[
Pubmed]   


26.Epiphanio S, Mikolajczak SA, Gonalves LA, Pamplona A, Portugal S, Albuquerque S, Goldberg M, Rebelo S, Anderson DG, Akinc A, Vornlocher HP, Kappe SH, Soares MP, Mota MM. Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine Plasmodium liver infection. Cell Host Microbe 2008; 3:331-8.

http://dx.doi.org/10.1016/j.chom.2008.04.003

[
Pubmed]   


27.Gayathri P, Balaram H, Murthy MR. Structural biology of plasmodial proteins. Curr Opin Struct Biol 2007; 17:744-54.

http://dx.doi.org/10.1016/j.sbi.2007.08.001

[
Pubmed]   


28.Narum DL, Thomas AW. Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. Mol Biochem Parasitol 1994; 67:59-68.

http://dx.doi.org/10.1016/0166-6851(94)90096-5

[
Pubmed]   


29.Hodder AN, Crewther PE, Matthew ML, Reid GE, Moritz RL, Simpson RJ, Anders RF. The disulfide bond structure of Plasmodium apical membrane antigen-1. J Biol Chem 1996; 271:29446-52.

http://dx.doi.org/10.1074/jbc.271.46.29446

[
Pubmed]   


30.Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, Cowman AF. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 2001; 20:5636-49.

http://dx.doi.org/10.1093/emboj/20.20.5636

[
Pubmed]    [PMC Free Fulltext]   


31.Mouray E, Moutiez M, Girault S, Sergheraert C, Florent I, Grellier P. Biochemical properties and cellular localization of Plasmodium falciparum protein disulfide isomerase. Biochimie 2007; 89:337-46.

http://dx.doi.org/10.1016/j.biochi.2006.11.001

[
Pubmed]   


32.Frand AR, Kaiser CA. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 1999; 4:469-77.

http://dx.doi.org/10.1016/S1097-2765(00)80198-7

[
Pubmed]   


33.Lumb RA, Bulleid NJ. Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J 2002; 21:6763-70.

http://dx.doi.org/10.1093/emboj/cdf685

[
Pubmed]    [PMC Free Fulltext]   


34.Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454:455-62.

http://dx.doi.org/10.1038/nature07203

[
Pubmed]    [PMC Free Fulltext]   


35.Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 1992; 89:10405-9.

http://dx.doi.org/10.1073/pnas.89.21.10405

[
Pubmed]    [PMC Free Fulltext]   


36.Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Floh R, Floh L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001; 276:7397-403.

http://dx.doi.org/10.1074/jbc.M008631200

[
Pubmed]   


37.Kapoor G, Banyal HS. Glutathione reductase and thioredoxin reductase: novel antioxidant enzymes from Plasmodium berghei. Korean J Parasitol 2009; 47:421-4.

http://dx.doi.org/10.3347/kjp.2009.47.4.421

[
Pubmed]    [PMC Free Fulltext]   


38.Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed Engl 2005; 44:690-715.

http://dx.doi.org/10.1002/anie.200300639

[
Pubmed]   


39.Bannai S, Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol 1986; 89:1-8.

http://dx.doi.org/10.1007/BF01870891

[
Pubmed]   


40.Becker K, Kanzok SM, Iozef R, Fischer M, Schirmer RH, and Rahlfs S. Plasmoredoxin, a novel redox-active protein unique for malarial parasites. Eur J Biochem 2003; 270:10571064.

http://dx.doi.org/10.1046/j.1432-1033.2003.03495.x

[
Pubmed]   


41.Jortzik E, Becker K. Thioredoxin and glutathione systems in Plasmodium falciparum. Int J Med Microbiol 2012; 302:187-94.

http://dx.doi.org/10.1016/j.ijmm.2012.07.007

[
Pubmed]   


42.Hirota K, Nishiyama A, Yodoi J. Reactive oxygen intermediates, thioredoxin, and Ref-1 as effector molecules in cellular signal transduction. Tanpakushitsu Kakusan Koso 1999; 44:2414-9.

[
Pubmed]   


43.Holmgren A The function of thioredoxin and glutathione in deoxyribonucleic acid synthesis. Biochem Soc Trans 1977; 5:611-2.

[
Pubmed]   


44.Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Mller S. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 2002; 277:25970-5.

http://dx.doi.org/10.1074/jbc.M203539200

[
Pubmed]   


45.Kawazu S, Komaki K, Tsuji N, Kawai S, Ikenoue N, Hatabu T, Ishikawa H, Matsumoto Y, Himeno K, Kano S. Molecular characterization of a 2-Cys peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2001; 116:73-9.

http://dx.doi.org/10.1016/S0166-6851(01)00308-5


46.Akerman SE, Mller S. 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol 2003; 130:75-81.

http://dx.doi.org/10.1016/S0166-6851(03)00161-0

[
Pubmed]   


47.Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA. Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol Biol 2005; 346:1021-34.

http://dx.doi.org/10.1016/j.jmb.2004.12.022

[
Pubmed]   


48.Richard D, Bartfai R, Volz J, Ralph SA, Muller S, Stunnenberg HG, Cowman AF. A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum. J Biol Chem 2011; 286:11746-55.

http://dx.doi.org/10.1074/jbc.M110.198499

[
Pubmed]    [PMC Free Fulltext]   


49.Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K. Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 2006; 8:1227-39.

http://dx.doi.org/10.1089/ars.2006.8.1227

[
Pubmed]   


50.Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998; 10:248-53.

http://dx.doi.org/10.1016/S0955-0674(98)80147-6

[
Pubmed]   


51.Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 2005; 17:183-9.

http://dx.doi.org/10.1016/j.ceb.2005.02.004

[
Pubmed]   


52.Kawazu S, Ikenoue N, Takemae H, Komaki-Yasuda K, Kano S. Roles of 1-Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum. FEBS J 2005; 272:1784-91.

http://dx.doi.org/10.1111/j.1742-4658.2005.04611.x

[
Pubmed]   


53.Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J 3rd, Rahlfs S, Becker K. The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci USA 2009; 106:13323-8.

http://dx.doi.org/10.1073/pnas.0905387106

[
Pubmed]    [PMC Free Fulltext]   


54.DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. Proc Natl Acad Sci USA 2007; 104:2121-6.

http://dx.doi.org/10.1073/pnas.0608407104

[
Pubmed]    [PMC Free Fulltext]   


55.Tomas AM, Margos G, Dimopoulos G, van Lin LH, de Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J 2001; 20:3975-83.

http://dx.doi.org/10.1093/emboj/20.15.3975

[
Pubmed]    [PMC Free Fulltext]   


56.Dessens JT, Sidn-Kiamos I, Mendoza J, Mahairaki V, Khater E, Vlachou D, Xu XJ, Kafatos FC, Louis C, Dimopoulos G, Sinden RE. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 2003; 49:319-29.

http://dx.doi.org/10.1046/j.1365-2958.2003.03566.x

[
Pubmed]   


57.Yuda M, Yano K, Tsuboi T, Torii M, Chinzei Y. von Willebrand Factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol Biochem Parasitol 2001; 116:65-72.

http://dx.doi.org/10.1016/S0166-6851(01)00304-8

[
Pubmed]   


58.Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, Kafatos FC, Sinden RE. CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 1999; 18:6221-7.

http://dx.doi.org/10.1093/emboj/18.22.6221

[
Pubmed]    [PMC Free Fulltext]   


59.Han YS, Thompson J, Kafatos FC, Barillas-Mury C. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 2000; 19:6030-40.

http://dx.doi.org/10.1093/emboj/19.22.6030

[
Pubmed]    [PMC Free Fulltext]   


60.Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001; 30:463-88.

http://dx.doi.org/10.1016/S0891-5849(00)00373-7

[
Pubmed]   


61.Sobolewski P, Gramaglia I, Frangos JA, Intaglietta M, van der Heyde H. Plasmodium berghei resists killing by reactive oxygen species. Infect Immun 2005; 73:6704-10.

http://dx.doi.org/10.1128/IAI.73.10.6704-6710.2005

[
Pubmed]    [PMC Free Fulltext]   


62.Peterson TM, Gow AJ, Luckhart S. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic Biol Med 2007; 42:132-42.

http://dx.doi.org/10.1016/j.freeradbiomed.2006.10.037

[
Pubmed]    [PMC Free Fulltext]   


63.Luckhart S, Vodovotz Y, Cui L, Rosenberg R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 1998; 95:5700-5.

http://dx.doi.org/10.1073/pnas.95.10.5700

[
Pubmed]    [PMC Free Fulltext]   


64.Vega-Rodrguez J, Franke-Fayard B, Dinglasan RR, Janse CJ, Pastrana-Mena R, Waters AP, Coppens I, Rodrguez-Orengo JF, Srinivasan P, Jacobs-Lorena M, Serrano AE. The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLoS Pathog 2009; 5:e1000302.

http://dx.doi.org/10.1371/journal.ppat.1000302

[
Pubmed]    [PMC Free Fulltext]   


65.Buchholz K, Putrianti ED, Rahlfs S, Schirmer RH, Becker K, Matuschewski K. Molecular genetics evidence for the in vivo roles of the two major NADPH-dependent disulfide reductases in the malaria parasite. J Biol Chem 2010; 285:37388-95.

http://dx.doi.org/10.1074/jbc.M110.123323

[
Pubmed]    [PMC Free Fulltext]   


66.Yano K, Otsuki H, Arai M, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, Kawazu S. Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. Mol Biochem Parasitol 2008; 159:142-5.

http://dx.doi.org/10.1016/j.molbiopara.2008.03.002

[
Pubmed]   


67.Yano K, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, Kawazu S. 2-Cys Peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei. Mol Biochem Parasitol 2006; 148:44-51.

http://dx.doi.org/10.1016/j.molbiopara.2006.02.018

[
Pubmed]   


68.Wright AD, Wang H, Gurrath M, Knig G M, Kocak G, Neumann G, Loria P, Foley M, Tilley L. Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J Med Chem 2001; 44:873-85.

http://dx.doi.org/10.1021/jm0010724

[
Pubmed]   


69.Fotie J, Nkengfack AE, Rukunga G, Tolo F, Peter MGH, Heydenrich M, Fomun ZT In vivo antimalarial activity of some oxygenated xanthones. Ann Trop Med Parasitol 2003; 97:683-8.

http://dx.doi.org/10.1179/000349803225002390

[
Pubmed]   


70.Cameron A, Read J, Tranter R, Winter VJ. Sessions RB, Brady RL, Vivas L, Easton A_, Kendrick H, Croft SL, Barros David, Lavandera JL, Martin JJ, Risco F, Garca-Ochoa S, Gamo FJ, Sanz L, Leon L, Ruiz JR, Gabarro R, Mallo A, Gmez de las Heras F. Identification and Activity of a Series of Azole-based Compounds with Lactate Dehydrogenase-directed Anti-malarial Activity. J Biol Chem 2004; 279:31429-39S.

http://dx.doi.org/10.1074/jbc.M402433200

[
Pubmed]   


71.Buchholz K, Schirmer RH, Eubel JK, Akoachere MB, Dandekar T, Becker K, Gromer S. Antimicrob Agents Chemother. Interactions of methylene blue with human disulfide reductases and their orthologues from Plasmodium falciparum. Antimicrob Agents Chemother 2008; 52:183-91.

http://dx.doi.org/10.1128/AAC.00773-07

[
Pubmed]    [PMC Free Fulltext]   


72.Pal C, Bandyopadhyay U. Redox-active antiparasitic drugs. Antioxid Redox Signal 2012; 17:555-82.

http://dx.doi.org/10.1089/ars.2011.4436

[
Pubmed]   


73.Legorreta-Herrera M, Retana-Ugalde R, Ventura-Gallegos JL, Narvez V. Pyrimethamine induces oxidative stress in Plasmodium yoelii 17XL-infected mice: a novel immunomodulatory mechanism of action for an old antimalarial drug? Exp Parasitol 2010; 126:381-8.

http://dx.doi.org/10.1016/j.exppara.2010.02.013

[
Pubmed]   


74.Phillips RS. Current status of malaria and potential for control. Clin Microbiol Rev 2001; 14:208-26.

http://dx.doi.org/10.1128/CMR.14.1.208-226.2001

[
Pubmed]    PMCid:88970

This Article Cited By the following articles


2017; (): 131.

1
 
Cellular stress associated with the differentiation of Plasmodium berghei ookinetes
Biochem. Cell Biol. 2017; 95(2): 310.

2
 

Parasites Vectors 2017; 10(1): .

3
 
Plasma glutathione and oxidized glutathione level, glutathione/oxidized glutathione ratio, and albumin concentration in complicated and uncomplicated falciparum malaria
Asian Pacific Journal of Tropical Biomedicine 2016; (): .

4
 
Inference of the Oxidative Stress Network in Anopheles stephensi upon Plasmodium Infection
PLoS ONE 2014; 9(12): e114461.

5
 

How to Cite this Article
Pubmed Style

Duran-Bedolla J, Rodriguez MH, Saldana-Navor V, Rivas-Arancibia S, Cerbon M, Rodriguez MC. Oxidative stress: production in several processes and organelles during Plasmodium sp development. Oxid Antioxid Med Sci. 2013; 2(2): 93-100. doi:10.5455/oams.130413.rv.007


Web Style

Duran-Bedolla J, Rodriguez MH, Saldana-Navor V, Rivas-Arancibia S, Cerbon M, Rodriguez MC. Oxidative stress: production in several processes and organelles during Plasmodium sp development. http://www.ejmoams.com/?mno=33631 [Access: February 20, 2018]. doi:10.5455/oams.130413.rv.007


AMA (American Medical Association) Style

Duran-Bedolla J, Rodriguez MH, Saldana-Navor V, Rivas-Arancibia S, Cerbon M, Rodriguez MC. Oxidative stress: production in several processes and organelles during Plasmodium sp development. Oxid Antioxid Med Sci. 2013; 2(2): 93-100. doi:10.5455/oams.130413.rv.007



Vancouver/ICMJE Style

Duran-Bedolla J, Rodriguez MH, Saldana-Navor V, Rivas-Arancibia S, Cerbon M, Rodriguez MC. Oxidative stress: production in several processes and organelles during Plasmodium sp development. Oxid Antioxid Med Sci. (2013), [cited February 20, 2018]; 2(2): 93-100. doi:10.5455/oams.130413.rv.007



Harvard Style

Duran-Bedolla, J., Rodriguez, M. H., Saldana-Navor, V., Rivas-Arancibia, S., Cerbon, M. & Rodriguez, M. C. (2013) Oxidative stress: production in several processes and organelles during Plasmodium sp development. Oxid Antioxid Med Sci, 2 (2), 93-100. doi:10.5455/oams.130413.rv.007



Turabian Style

Duran-Bedolla, Josefina, Mario Henry Rodriguez, Vianey Saldana-Navor, Selva Rivas-Arancibia, Marco Cerbon, and Maria Carmen Rodriguez. 2013. Oxidative stress: production in several processes and organelles during Plasmodium sp development. Oxidants and Antioxidants in Medical Science, 2 (2), 93-100. doi:10.5455/oams.130413.rv.007



Chicago Style

Duran-Bedolla, Josefina, Mario Henry Rodriguez, Vianey Saldana-Navor, Selva Rivas-Arancibia, Marco Cerbon, and Maria Carmen Rodriguez. "Oxidative stress: production in several processes and organelles during Plasmodium sp development." Oxidants and Antioxidants in Medical Science 2 (2013), 93-100. doi:10.5455/oams.130413.rv.007



MLA (The Modern Language Association) Style

Duran-Bedolla, Josefina, Mario Henry Rodriguez, Vianey Saldana-Navor, Selva Rivas-Arancibia, Marco Cerbon, and Maria Carmen Rodriguez. "Oxidative stress: production in several processes and organelles during Plasmodium sp development." Oxidants and Antioxidants in Medical Science 2.2 (2013), 93-100. Print. doi:10.5455/oams.130413.rv.007



APA (American Psychological Association) Style

Duran-Bedolla, J., Rodriguez, M. H., Saldana-Navor, V., Rivas-Arancibia, S., Cerbon, M. & Rodriguez, M. C. (2013) Oxidative stress: production in several processes and organelles during Plasmodium sp development. Oxidants and Antioxidants in Medical Science, 2 (2), 93-100. doi:10.5455/oams.130413.rv.007





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 11 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 7 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 6 times [Click to see citing articles]