ISSN 2146-8389
 

Original Research (Original Article) 


Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation

Olexandr Tsybulin, Evgeniy Sidorik, Sergiy Kyrylenko, Igor Yakymenko.

Abstract
Objective: Oxidative mechanisms of the mutagenic and carcinogenic potential of radiofrequency radiation (RFR) have been demonstrated recently. This opens the need for antioxidative approach for protection of living cells from harmful effects of RFR. In this study, we aimed to assess the antioxidant potential of monochromatic red light of light-emitting diodes (LED) in RFR-exposed embryonic cells.
Methods: One group of Japanese quail embryos was exposed in ovo to GSM 900 MHz RFR (I = 1 14 µW/cm2; SAR = 0.17 mW/kg; t = 158 h; discontinuously) before and during the first hours of incubation. The second group of embryos was exposed to RFR in the same regimen and additionally to LED red light (λmax = 630-650 nm; I = 0.1 mW/cm2; t = 180 c; discontinuously). The third group of embryos were served as control. The rate of somitogenesis, level of lipid peroxidation, activity of superoxide dismutase (SOD) and catalase in tissues of 38-h embryos were assessed.
Results: Red light of LED exposure resulted in statistically significant reversion of the rate of somitogenesis decreased under RFR exposure; as well as in reversion of significantly increased level of lipid peroxidation and decreased catalase activity in tissues of RFR exposed embryos. In vitro significant suppression of SOD and catalase activities by short-term RFR exposure were partially reversed by LED red light treatment.
Conclusion: Red light of LED can protect embryonic cells from oxidative stress caused by low intensity RFR exposure. This is of particularly importance in terms of potential mutagenicity and carcinogenicity of low intensity RFR, which in turn depends on the oxidative potential of RFR.

Key words: Electromagnetic radiation, embryogenesis, light-emitting diodes, monochromatic red light


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Olexandr Tsybulin
Articles by Evgeniy Sidorik
Articles by Sergiy Kyrylenko
Articles by Igor Yakymenko
on Google
on Google Scholar
Article Statistics
 Viewed: 1059
Downloaded: 509
Cited: 0

REFERENCES
1. Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Islami F, Galichet L, Straif K; WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 2011; 12:624-6. [DOI via Crossref]   
2. Hardell L, Carlberg M, Soderqvist F, Mild KH, Morgan LL. Longterm use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup Environ Med 2007; 64:626-32. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
3. Hardell L, Carlberg M, Hansson Mild K, Eriksson M. Case-control study on the use of mobile and cordless phones and the risk for malignant melanoma in the head and neck region. Pathophysiology 2011; 18:325-33. [DOI via Crossref]    [Pubmed]   
4. Sato Y, Akiba S, Kubo O, Yamaguchi N. A case-case study of mobile phone use and acoustic neuroma risk in Japan. Bioelectromagnetics 2011; 32:85-93. [DOI via Crossref]    [Pubmed]   
5. Sadetzki S, Chetrit A, Jarus-Hakak A, Cardis E, Deutch Y, Duvdevani S, Zultan A, Novikov I, Freedman L, Wolf M. Cellular phone use and risk of benign and malignant parotid gland tumors--a nationwide case-control study. Am J Epidemiol 2008; 167:457-67. [DOI via Crossref]    [Pubmed]   
6. Eger H, Hagen KU, Lucas B, Vogel P, Voit H. Einfluss der räumlichen Nähe von Mobilfunksendeanlagen auf die Krebsinzidenz. Umwelt·Medizin·Gesellschaft 2004; 17:326-332.
7. Wolf R, Wolf D. Increased incidence of cancer near a cell-phone transmitted station. Columbus FH (ed) Trends in Cancer Prevention, Nova Science Publishers, pp 1-8, 2007.
8. Chou CK, Guy AW, Kunz LL, Johnson RB, Crowley JJ, Krupp JH. Long-term, low-level microwave irradiation of rats. Bioelectromagnetics 1992; 13:469-96. [DOI via Crossref]    [Pubmed]   
9. Toler JC, Shelton WW, Frei MR, Merritt JH, Stedham MA. Longterm, low-level exposure of mice prone to mammary tumors to 435 MHz radiofrequency radiation. Radiat Res 1997; 148:227-34. [DOI via Crossref]    [Pubmed]   
10. Szmigielski S, Szudzinski A, Pietraszek A, Bielec M, Janiak M, Wrembel JK. Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation. Bioelectromagnetics 1982; 3:179-91. [DOI via Crossref]    [Pubmed]   
11. Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, Harris AW. Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat Res 1997; 147:631-40. [DOI via Crossref]    [Pubmed]   
12. Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009; 16:89-102. [DOI via Crossref]    [Pubmed]   
13. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low intensity radiofrequency radiation. Electromagn Biol Med 2015; DO I:10.3109/15368378.2015.1043557.
14. Yakymenko I, Sidorik E, Henshel D, Kyrylenko S. Low intensity radiofrequency radiation: a new oxidant for living cells. Oxid Antioxid Med Sci 2014; 3:1-3. [DOI via Crossref]   
15. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007; 405:559-68. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
16. Burlaka A, Tsybulin O, Sidorik E, Lukin S, Polishuk V, Tsehmistrenko S, Yakymenko I. Overproduction of free radical species in embryonic cells exposed to low intensity radiofrequency radiation. Exp Oncol 2013; 35:219-25.
17. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009; 4:e6446.
18. Khalil AM, Gagaa MH, Alshamali AM. 8-Oxo-7, 8-dihydro-2'- deoxyguanosine as a biomarker of DNA damage by mobile phone radiation. Hum Exp Toxicol 2012; 31:734-40. [DOI via Crossref]    [Pubmed]   
19. Xu S, Zhou Z, Zhang L, Yu Z, Zhang W, Wang Y, Wang X, Li M, Chen Y, Chen C, He M, Zhang G, Zhong M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res 2010; 1311:189-96. [DOI via Crossref]    [Pubmed]   
20. Guler G, Tomruk A, Ozgur E, Sahin D, Sepici A, Altan N, Seyhan N. The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. Int J Radiat Biol 2012; 88:367-73. [DOI via Crossref]    [Pubmed]   
21. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 2005; 36:350-5. [DOI via Crossref]    [Pubmed]   
22. Ayata A, Mollaoglu H, Yilmaz HR, Akturk O, Ozguner F, Altuntas I. Oxidative stress-mediated skin damage in an experimental mobile phone model can be prevented by melatonin. J Dermatol 2004; 31:878-83. [DOI via Crossref]    [Pubmed]   
23. Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem 2006; 282:83-8. [DOI via Crossref]    [Pubmed]   
24. Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T, Pavlovic V. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res (Tokyo) 2008; 49:579-86. [DOI via Crossref]   
25. Lai H, Singh NP. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 1997; 18:446-54. [DOI via Crossref]   
26. Jelodar G, Akbari A, Nazifi S. The prophylactic effect of vitamin C on oxidative stress indexes in rat eyes following exposure to radiofrequency wave generated by a BTS antenna model. Int J Radiat Biol 2013; 89:128-31. [DOI via Crossref]    [Pubmed]   
27. Oral B, Guney M, Ozguner F, Karahan N, Mungan T, Comlekci S, Cesur G. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther 2006; 23:957-73. [DOI via Crossref]    [Pubmed]   
28. Turker Y, Naziroglu M, Gumral N, Celik O, Saygin M, Comlekci S, Flores-Arce M. Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 2011; 143:1640-50.
29. Yakimenko I, Besulin V, Testik A. The effects of low intensity red laser irradiation on hatching eggs in chicken and quail. Int J Poultry Sci 2002; 1:6-8. [DOI via Crossref]   
30. Yakymenko I, Sidorik E. Regulatory effects of low intensity laser radiation on antioxidant system. Ukrainian Biochem J 2001; 73:16- 23.
31. Yakymenko I, Tsarenko T, Sidorik E. Modulating effect of heliumneon laser radiation on the state of antioxidant and hydroxylation systems of quail liver under X-ray irradiation and chemical intoxication. Ukrainian Biochemical J 2004; 76:115-22.
32. Tsybulin O, Sidorik E, Brieieva O, Buchynska L, Kyrylenko S, Henshel D, Yakymenko I. GSM 900 MHz cellular phone radiation can either stimulate or depress early embryogenesis in Japanese quails depending on the duration of exposure. Int J Radiat Biol 2013; 89:756-63. [DOI via Crossref]    [Pubmed]   
33. Yakymenko I, Tsybulin O. Regulatory effects of low intensity visible light on bird somitogenesis. Reports of the National Academy of Sciences of Ukraine 2007; 2:163-8.
34. Andreeva L, Kogemiakin L, Kishkun A. Modification of the method of determining lipid peroxidation in a test using thiobarbituric acid. Lab Delo 1988; 11:41-3.
35. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186:421-31. [DOI via Crossref]   
36. Chevary S, Chaba I, Sekei I. Role of superoxide dismutase in cellular oxidative processes and method of its determination in biological materials. Lab Delo 1985; 11:678-81.
37. Koroliuk MA, Ivanova LI, Maiorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo 1988; 1:16-9.
38. Oksay T, Naziroglu M, Dogan S, Guzel A, Gumral N, Kosar PA. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia 2014; 46:65- 72. [DOI via Crossref]    [Pubmed]   
39. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 1998; 74:494-522.
40. Avci B, Akar A, Bilgici B, Tuncel OK. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol 2012; 88:799-805. [DOI via Crossref]    [Pubmed]   
41. Bilgici B, Akar A, Avci B, Tuncel OK. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn Biol Med 2013; 32:20-9. 42. Karu T. Is it time to consider photobiomodulation as a drug equivalent? Photomed Laser Surg 2013; 31:189-91.
43. Vladimirov YA, Osipov A, Klebanov G. Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Moscow) 2004; 69:81-90. [DOI via Crossref]   
44. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 2006; 24:121-8. [DOI via Crossref]    [Pubmed]   
45. Yakymenko I, Sidorik E. Protective effect of red laser on exposed to radiation embryos of birds. Ukrainian J Radiol 2001; 9:59-62.
46. Yeager RL, Lim J, Millsap DS, Jasevicius AV, Sanders RA, Whelan HT, Watkins JB, Eells JT, Henshel DS. 670 nanometer light treatment attenuates dioxin toxicity in the developing chick embryo. J Biochem Mol Toxicol 2006; 20:271-8. [DOI via Crossref]    [Pubmed]   
47. Tsybulin OS, Iakymenko IL. Influence of monochromatic visible light on energetic system of mitochondria. Ukr Biokhim Zh (1999) 2006; 78:16-21.
48. Bohr H, Bohr J. Microwave enhanced kinetics observed in ORD studies of a protein. Bioelectromagnetics 2000; 21:68-72. [DOI via Crossref]   
49. Bohr H, Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 2000; 61:4310-4. [DOI via Crossref]   
50. Budi A, Legge FS, Treutlein H, Yarovsky I. Effect of frequency on insulin response to electric field stress. J Phys Chem B 2007; 111:5748-56. [DOI via Crossref]    [Pubmed]   
51. Pavicic I, Trosic I. Interaction of GSM modulated RF radiation and macromolecular cytoskeleton structures. Presented at: 6th International Workshop on Biological Effects of Electromagnetic Fields, Bodrum, Turkey, 2010.
52. Vladimirov YA, Gorbatenkova EA, Paramonov NV, Azizova OA. Photoreactivation of superoxide dismutase by intensive red (laser) light. Free Radic Biol Med 1988; 5:281-6. [DOI via Crossref]   
53. Zubkova S. Mechanism of biological effect of helium-neon laser irradiation. Nauchnye Doki Vyss Shkoly Biol Nauki 1978; 7:30-7.
54. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231-55.
55. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39:44-84. [DOI via Crossref]    [Pubmed]   
56. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160:1-40. [DOI via Crossref]    [Pubmed]   
57. Zhang R, Kang KA, Kim KC, Na SY, Chang WY, Kim GY, Kim HS, Hyun JW. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 2013; 524:214-9. [DOI via Crossref]    [Pubmed]   
58. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 2008; 266:6-11. [DOI via Crossref]    [Pubmed]   
59. Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 2009; 47:115-27. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

How to Cite this Article
Pubmed Style

Tsybulin O, Sidorik E, Kyrylenko S, Yakymenko I. Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. Oxid Antioxid Med Sci. 2016; 5(1): 21-27. doi:10.5455/oams.010216.or.092


Web Style

Tsybulin O, Sidorik E, Kyrylenko S, Yakymenko I. Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. http://www.ejmoams.com/?mno=211931 [Access: May 22, 2018]. doi:10.5455/oams.010216.or.092


AMA (American Medical Association) Style

Tsybulin O, Sidorik E, Kyrylenko S, Yakymenko I. Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. Oxid Antioxid Med Sci. 2016; 5(1): 21-27. doi:10.5455/oams.010216.or.092



Vancouver/ICMJE Style

Tsybulin O, Sidorik E, Kyrylenko S, Yakymenko I. Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. Oxid Antioxid Med Sci. (2016), [cited May 22, 2018]; 5(1): 21-27. doi:10.5455/oams.010216.or.092



Harvard Style

Tsybulin, O., Sidorik, E., Kyrylenko, S. & Yakymenko, I. (2016) Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. Oxid Antioxid Med Sci, 5 (1), 21-27. doi:10.5455/oams.010216.or.092



Turabian Style

Tsybulin, Olexandr, Evgeniy Sidorik, Sergiy Kyrylenko, and Igor Yakymenko. 2016. Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. Oxidants and Antioxidants in Medical Science, 5 (1), 21-27. doi:10.5455/oams.010216.or.092



Chicago Style

Tsybulin, Olexandr, Evgeniy Sidorik, Sergiy Kyrylenko, and Igor Yakymenko. "Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation." Oxidants and Antioxidants in Medical Science 5 (2016), 21-27. doi:10.5455/oams.010216.or.092



MLA (The Modern Language Association) Style

Tsybulin, Olexandr, Evgeniy Sidorik, Sergiy Kyrylenko, and Igor Yakymenko. "Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation." Oxidants and Antioxidants in Medical Science 5.1 (2016), 21-27. Print. doi:10.5455/oams.010216.or.092



APA (American Psychological Association) Style

Tsybulin, O., Sidorik, E., Kyrylenko, S. & Yakymenko, I. (2016) Monochromatic red light of LED protects embryonic cells from oxidative stress caused by radiofrequency radiation. Oxidants and Antioxidants in Medical Science, 5 (1), 21-27. doi:10.5455/oams.010216.or.092





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 12 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 10 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 8 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 8 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 6 times [Click to see citing articles]