ISSN 2146-8389
 

Invited Review 


Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control

Mark F. McCarty, James J. DiNicolantonio, Charles F. Glassman.

Cited by (1)

Abstract
Angiotensin II (ATII), acting via type I ATII receptors (AT1R), promotes vasoconstriction of vascular smooth muscle; hence, angiotensin antagonist drugs, i.e. angiotensin receptors blockers (ARB) and angiotensin converting enzyme (ACE) inhibitors, are employed in the management of hypertension. However, AT1R stimulation also activates NADPH oxidase complexes in a range of tissues, via joint stimulation of protein kinase C (PKC) and Rac. Angiotensin antagonist drugs therefore function as “source antioxidants” preventing oxidative stress at its source by blocking superoxide production. This phenomenon may explain why these drugs have been found to convey a range of health benefits that are at least partially independent of their impact on blood pressure. These benefits appear to include: a reduction in risk for type 2 diabetes; an improvement in endothelial function; reduced risk for vascular disorders including atrial fibrillation, left ventricular hypertrophy and aortic aneurysms; reduced mortality in, and a possible preventive impact on, chronic obstructive pulmonary disease (COPD); slowed progression of kidney disease; slowed progression of diabetic neuropathy and retinopathy; decreased risk for non-alcoholic fatty liver disease; neuroprotective effects which may aid prevention of Parkinson’s and Alzheimer’s diseases; and an inhibitory impact on induction and spread of prostate cancer. There is reason to suspect that each of these benefits is largely attributable to the source antioxidant activity of ARB and ACE inhibitors. In light of the versatility of the protection afforded by these drugs, and the low risk for side effects with ARB, consideration should be given to the possibility of using ARB as a preventive measure in the general population (excluding pregnant women), in non-hypertensives and hypertensives alike - perhaps as a component of a “polypill”. Moreover, the broadly favorable clinical experience with angiotensin antagonist drugs suggests that source antioxidants as a class may have far greater potential for preserving health than antioxidants which merely act as oxidant scavengers.

Key words: ACE inhibitors, angiotensin, angiotensin receptor blockers, NADPH oxidase, spirulina, telmisartan


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Mark F. McCarty
Articles by James J. DiNicolantonio
Articles by Charles F. Glassman
on Google
on Google Scholar
Article Statistics
 Viewed: 1631
Downloaded: 436
Cited: 1

REFERENCES
1. Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, Rhee SG. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J Biol Chem 2008;283:255-67. [DOI via Crossref]    [Pubmed]   
2. Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 2009;302:148-58. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
3. Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal 2014;26:2147-60. [DOI via Crossref]    [Pubmed]   
4. Ushio-Fukai M, Alexander RW, Akers M, Lyons PR, Lass�gue B, Griendling KK. Angiotensin II receptor coupling to phospholipase D is mediated by the betagamma subunits of heterotrimeric G proteins in vascular smooth muscle cells. Mol Pharmacol 1999;55:142-9. [Pubmed]   
5. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 2003;546:93-7. [DOI via Crossref]   
6. Ebi H, Costa C, Faber AC, Nishtala M, Kotani H, Juric D, et al. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci U S A 2013 24;110:21124-9. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
7. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P) H oxidase activity: Upstream mediators. Circ Res 2002;91:406-13. [DOI via Crossref]    [Pubmed]   
8. Zafari AM, Ushio-Fukai M, Minieri CA, Akers M, Lassegue B, Griendling KK. Arachidonic acid metabolites mediate angiotensin IIinduced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells. Antioxid Redox Signal 1999;1:167-79. [DOI via Crossref]    [Pubmed]   
9. Dana R, Leto TL, Malech HL, Levy R. Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 1998;273:441-5. [DOI via Crossref]    [Pubmed]   
10. Pendergrass KD, Gwathmey TM, Michalek RD, Grayson JM, Chappell MC. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus. Biochem Biophys Res Commun 2009;384:149-54. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
11. Wakui H, Dejima T, Tamura K, Uneda K, Azuma K, Maeda A, et al. Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension. Cardiovasc Res 2013;100:511-9. [DOI via Crossref]    [Pubmed]   
12. Fazeli G, Stopper H, Schinzel R, Ni CW, Jo H, Schupp N. Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis 2012;27:673-81. [DOI via Crossref]    [Pubmed]   
13. Lee DY, Wauquier F, Eid AA, Roman LJ, Ghosh-Choudhury G, Khazim K, et al. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: Role of mitochondrial reactive oxygen species. J Biol Chem 2013;288:28668-86. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
14. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: Effect on endothelial NAD(P) H oxidase system. Circ Res 2003;93:767-75. [DOI via Crossref]    [Pubmed]   
15. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Redox regulation of protein tyrosine phosphatases: Structural and chemical aspects. Antioxid Redox Signal 2011;15:77-97. [DOI via Crossref]    [Pubmed]   
16. Bindoli A, Rigobello MP. Principles in redox signaling: From chemistry to functional significance. Antioxid Redox Signal 2013;18:1557-93. [DOI via Crossref]    [Pubmed]   
17. Lo Conte M, Carroll KS. The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 2013;288:26480-8. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
18. Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986;320:454-6. [DOI via Crossref]    [Pubmed]   
19. M�nzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010;31:2741-8. [DOI via Crossref]    [Pubmed]   
20. Horsfall LJ, Nazareth I, Pereira SP, Petersen I. Gilbert�s syndrome and the risk of death: A population-based cohort study. J Gastroenterol Hepatol 2013;28:1643-7. [DOI via Crossref]   
21. Horsfall LJ, Rait G, Walters K, Swallow DM, Pereira SP, Nazareth I, et al. Serum bilirubin and risk of respiratory disease and death. JAMA 2011;305:691-7. [DOI via Crossref]    [Pubmed]   
22. Lin JP, Vitek L, Schwertner HA. Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardiovascular disease. Clin Chem 2010;56:1535-43. [DOI via Crossref]    [Pubmed]   
23. Horsfall LJ, Nazareth I, Petersen I. Cardiovascular events as a function of serum bilirubin levels in a large, statin-treated cohort. Circulation 2012;126:2556-64. [DOI via Crossref]    [Pubmed]   
24. Temme EH, Zhang J, Schouten EG, Kesteloot H. Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control 2001;12:887-94. [DOI via Crossref]    [Pubmed]   
25. Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs 2004;64:2537-65. [DOI via Crossref]    [Pubmed]   
26. van der Zijl NJ, Moors CC, Goossens GH, Blaak EE, Diamant M. Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes Obes Metab2012;14:586-95. [DOI via Crossref]    [Pubmed]   
27. van der Zijl NJ, Moors CC, Goossens GH, Hermans MM, Blaak EE, Diamant M. Valsartan improves {beta}-cell function and insulin sensitivity in subjects with impaired glucose metabolism: A randomized controlled trial. Diabetes Care 2011;34:845-51. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
28. YangY, Wei RB, Xing Y, Tang L, Zheng XY, Wang ZC, et al. A metaanalysis of the effect of angiotensin receptor blockers and calcium channel blockers on blood pressure, glycemia and the HOMA-IR index in non-diabetic patients. Metabolism 2013;62:1858-66. [DOI via Crossref]    [Pubmed]   
29. Rizos CV, Elisaf MS. Antihypertensive drugs and glucose metabolism. World J Cardiol 2014;6:517-30. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
30. Takagi H, Umemoto T, All-Literature Investigation of Cardiovascular Evidence Group. A meta-analysis of randomized trials of telmisartan versus active controls for insulin resistance in hypertensive patients. J Am Soc Hypertens 2014;8:578-92. [DOI via Crossref]    [Pubmed]   
31. Yamagishi S, Takeuchi M. Telmisartan is a promising cardiometabolic sartan due to its unique PPAR-gamma-inducing property. Med Hypotheses 2005;64:476-8. [DOI via Crossref]    [Pubmed]   
32. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004;43:993-1002. [DOI via Crossref]    [Pubmed]   
33. Inoguchi T, Nawata H. NAD(P) H oxidase activation: A potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr Drug Targets 2005;6:495-501. [DOI via Crossref]    [Pubmed]   
34. Ikeda N, Inoguchi T, Sonoda N, Fujii M, Takei R, Hirata E, et al. Biliverdin protects against the deterioration of glucose tolerance in db/db mice. Diabetologia 2011;54:2183-91. [DOI via Crossref]    [Pubmed]   
35. Saitoh Y, Hongwei W, Ueno H, Mizuta M, Nakazato M. Candesartan attenuates fatty acid-induced oxidative stress and NAD(P) H oxidase activity in pancreatic beta-cells. Diabetes Res Clin Pract 2010;90:54-9. [DOI via Crossref]    [Pubmed]   
36. Tahmasebi M, Puddefoot JR, Inwang ER, Vinson GP. The tissue renin-angiotensin system in human pancreas. J Endocrinol 1999;161:317-22. [DOI via Crossref]    [Pubmed]   
37. Leung PS, de Gasparo M. Involvement of the pancreatic reninangiotensin system in insulin resistance and the metabolic syndrome. J Cardiometab Syndr 2006;1:197-203. [DOI via Crossref]   
38. Hasan AU, Ohmori K, Hashimoto T, Kamitori K, Yamaguchi F, Ishihara Y, et al. Valsartan ameliorates the constitutive adipokine expression pattern in mature adipocytes: A role for inverse agonism of the angiotensin II type 1 receptor in obesity. Hypertens Res 2014;37:621-8. [DOI via Crossref]    [Pubmed]   
39. Hung WW, Hsieh TJ, Lin T, Chou PC, Hsiao PJ, Lin KD, et al. Blockade of the renin-angiotensin system ameliorates apelin production in 3T3-L1 adipocytes. Cardiovasc Drugs Ther 2011;25:3-12. [DOI via Crossref]    [Pubmed]   
40. Boccara F, Auclair M, Cohen A, Lef�vre C, Prot M, Bastard JP, et al. HIV protease inhibitors activate the adipocyte renin angiotensin system. Antivir Ther 2010;15:363-75. [DOI via Crossref]    [Pubmed]   
41. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-61. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
42. Ohlson LO, Larsson B, Bj�rntorp P, Eriksson H, Sv�rdsudd K, Welin L, et al. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia 1988;31:798-805. [DOI via Crossref]    [Pubmed]   
43. Cheriyath P, Gorrepati VS, Peters I, Nookala V, Murphy ME, Srouji N, et al. High Total Bilirubin as a Protective Factor for Diabetes Mellitus: An Analysis of NHANES Data From 1999 - 2006. J Clin Med Res 2010;2:201-6. [DOI via Crossref]   
44. V�tek L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front Pharmacol 2012;3:55. [DOI via Crossref]   
45. JungCH, Lee MJ, Kang YM, Hwang JY, Jang JE, Leem J, et al. Higher serum bilirubin level as a protective factor for the development of diabetes in healthy Korean men: A 4 year retrospective longitudinal study. Metabolism 2014;63:87-93. [DOI via Crossref]    [Pubmed]   
46. Higashi Y, Chayama K, Yoshizumi M. Angiotensin II type I receptor blocker and endothelial function in humans: Role of nitric oxide and oxidative stress. Curr Med Chem Cardiovasc Hematol Agents 2005;3:133-48. [DOI via Crossref]    [Pubmed]   
47. Landmesser U, Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: Role of bradykinin and nitric oxide. J Hypertens Suppl 2006;24:S39-43. [DOI via Crossref]    [Pubmed]   
48. Van Linthout S, Spillmann F, Lorenz M, Meloni M, Jacobs F, Egorova M, et al. Vascular-protective effects of high-density lipoprotein include the downregulation of the angiotensin II type 1 receptor. Hypertension 2009;53:682-7. McCarty, et al.: Angiotensin antagonists as source antioxidants Oxid Antioxid Med Sci ● 2015 ● Vol 4 ● Issue 1 9 [PMC Free Fulltext]   
49. Gragasin FS, Xu Y, Arenas IA, Kainth N, Davidge ST. Estrogen reduces angiotensin II-induced nitric oxide synthase and NAD(P) H oxidase xpression in endothelial cells. Arterioscler Thromb Vasc Biol 2003;23:38-44. [DOI via Crossref]    [Pubmed]   
50. Javeshghani D, Sairam MR, Neves MF, Schiffrin EL, Touyz RM. Angiotensin II induces vascular dysfunction without exacerbating blood pressure elevation in a mouse model of menopause-associated hypertension. J Hypertens 2006;24:1365-73. [DOI via Crossref]    [Pubmed]   
51. Curzen NP, Fox KM. Do ACE inhibitors modulate atherosclerosis? Eur Heart J 1997;18:1530-5. [DOI via Crossref]    [Pubmed]   
52. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ. Bradykinin-evoked sensitization of airway sensory nerves: A mechanism for ACE-inhibitor cough. Nat Med 1996;2:814-7. [DOI via Crossref]    [Pubmed]   
53. Bezalel S, Mahlab-Guri K, Asher I, Werner B, Sthoeger ZM. Angiotensin-converting Enzyme Inhibitor-induced Angioedema. Am J Med 2015;128:120-25. [DOI via Crossref]    [Pubmed]   
54. Li H, F�rstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol 2013;13:161-7. [DOI via Crossref]    [Pubmed]   
55. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest2003;111:1201-9. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
56. Chalupsky K, Cai H. Endothelial dihydrofolate reductase: Critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2005;102:9056-61. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
57. Oak JH, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes 2007;56:118-26. [DOI via Crossref]    [Pubmed]   
58. Wu F, Szczepaniak WS, Shiva S, Liu H, Wang Y, Wang L, et al. Nox2- dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014;307:L987-97. [DOI via Crossref]    [Pubmed]   
59. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res 2005;97:1232-5. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
60. Chung IM, Kim YM, Yoo MH, Shin MK, Kim CK, Suh SH. Immobilization stress induces endothelial dysfunction by oxidative stress via the activation of the angiotensin II/its type I receptor pathway. Atherosclerosis 2010;213:109-14. [DOI via Crossref]    [Pubmed]   
61. Shatanawi A, Romero MJ, Iddings JA, Chandra S, Umapathy NS, Verin AD, et al. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/ arginase pathway. Am J Physiol Cell Physiol 2011;300:C1181-92. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
62. Jin L, Ying Z, Hilgers RH, Yin J, Zhao X, Imig JD, et al. Increased RhoA/Rho-kinase signaling mediates spontaneous tone in aorta from angiotensin II-induced hypertensive rats. J Pharmacol Exp Ther 2006;318:288-95. [DOI via Crossref]    [Pubmed]   
63. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000;20:645-51. [DOI via Crossref]    [Pubmed]   
64. Ogata N, Yamamoto H, Kugiyama K, Yasue H, Miyamoto E. Involvement of protein kinase C in superoxide anion-induced activation of nuclear factor-kappa B in human endothelial cells. Cardiovasc Res 2000;45:513-21. [DOI via Crossref]   
65. Maloney E, Sweet IR, Hockenbery DM, Pham M, Rizzo NO, Tateya S, et al. Activation of NF-kappaB by palmitate in endothelial cells: A key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol 2009;29:1370-5. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
66. Muller G, Morawietz H. NAD(P) H oxidase and endothelial dysfunction. Horm Metab Res 2009;41:152-8. [DOI via Crossref]    [Pubmed]   
67. Armitage ME, Wingler K, Schmidt HH, La M. Translating the oxidative stress hypothesis into the clinic: NOX versus NOS. J Mol Med (Berl). 2009;87:1071-6. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
68. Arora S, Vaishya R, Dabla PK, Singh B. NAD(P) H oxidases in coronary artery disease. Adv Clin Chem 2010;50:65-86. [DOI via Crossref]   
69. Schramm A, Matusik P, Osmenda G, Guzik TJ. Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 2012;56:216-31. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
70. McCarty MF. Serum bilirubin may serve as a marker for increased heme oxygenase activity and inducibility in tissues � A rationale for the versatile health protection associated with elevated plasma bilirubin. Med Hypotheses 2013;81:607-10. [DOI via Crossref]    [Pubmed]   
71. Danchin N, Cucherat M, Thuillez C, Durand E, Kadri Z, Steg PG. Angiotensin-converting enzyme inhibitors in patients with coronary artery disease and absence of heart failure or left ventricular systolic dysfunction: An overview of long-term randomized controlled trials. Arch Intern Med 2006;166:787-96. [DOI via Crossref]    [Pubmed]   
72. Dagenais GR, Pogue J, Fox K, Simoons ML, Yusuf S. Angiotensinconverting- enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: A combined analysis of three trials. Lancet 2006;368:581-8. [DOI via Crossref]   
73. Strauss MH, Hall AS. Angiotensin receptor blockers may increase risk of myocardial infarction: Unraveling the ARB-MI paradox. Circulation 2006;114:838-54. [DOI via Crossref]    [Pubmed]   
74. Fuchs FD. The role of angiotensin receptor blockers in the prevention of cardiovascular and renal disease: Time for reassessment? Evid Based Med 2013;18:44-7. [DOI via Crossref]    [Pubmed]   
75. Cheng J, Zhang W, Zhang X, Han F, Li X, He X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: A metaanalysis. JAMA Intern Med 2014;174:773-85. [DOI via Crossref]    [Pubmed]   
76. Verma S, Strauss M. Angiotensin receptor blockers and myocardial infarction. BMJ 2004;329:1248-9. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
77. L�vy BI. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin-angiotensin system. Circulation 2004;109:8-13. [Pubmed]   
78. Kim MP, Zhou M, Wahl LM. Angiotensin II increases human monocyte matrix metalloproteinase-1 through the AT2 receptor and prostaglandin E2: Implications for atherosclerotic plaque rupture. J Leukoc Biol 2005;78:195-201. [DOI via Crossref]    [Pubmed]   
79. Guo RW, Yang LX, Wang H, Liu B, Wang L. Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaBdependent pathway in vascular smooth muscle cells. Regul Pept 2008 10;147(1-3):37-44.
80. Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens 2005;18:134S-41. [DOI via Crossref]    [Pubmed]   
81. Teo K, Yusuf S, Sleight P, Anderson C, Mookadam F, Ramos B, et al. Rationale, design, and baseline characteristics of 2 large, simple, randomized trials evaluating telmisartan, ramipril, and their combination in high-risk patients: The Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease (ONTARGET/TRANSCEND) trials. Am Heart J 2004;148:52-61. [DOI via Crossref]    [Pubmed]   
82. Marx N, Sch�nbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998;83:1097-103. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
83. Hsueh WA, Law RE. PPARgamma and atherosclerosis: Effects on cell growth and movement. Arterioscler Thromb Vasc Biol 2001;21:1891-5. [DOI via Crossref]   
84. Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, et al. New mechanism of rosiglitazone to reduce neointimal hyperplasia: Activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Arterioscler Thromb Vasc Biol 2009;29:472-9. [DOI via Crossref]    [Pubmed]   
85. Kosuge H, Ishihara T, Haraguchi G, Maejima Y, Okada H, Saiki H, et al. Treatment with telmisartan attenuates graft arteriosclerosis in murine cardiac allografts. J Heart Lung Transplant 2010;29:562-7. [DOI via Crossref]    [Pubmed]   
86. Guzeloglu M, Reel B, Atmaca S, Bagriyanik A, Hazan E. The effects of PPAR? agonist rosiglitazone on neointimal hyperplasia in rabbit carotid anastomosis model. J Cardiothorac Surg 2012;7:57. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
87. Zhang Y, Zhang P, Mu Y, Gao M, Wang JR, Wang Y, et al. The role of renin-angiotensin system blockade therapy in the prevention of atrial fibrillation: A meta-analysis of randomized controlled trials. Clin Pharmacol Ther 2010;88:521-31. [DOI via Crossref]    [Pubmed]   
88. Schneider MP, Hua TA, B�hm M, Wachtell K, Kjeldsen SE, Schmieder RE. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol 2010;55:2299-307. [DOI via Crossref]    [Pubmed]   
89. Huang G, Xu JB, Liu JX, He Y, Nie XL, Li Q, et al. Angiotensinconverting enzyme inhibitors and angiotensin receptor blockers decrease the incidence of atrial fibrillation: A meta-analysis. Eur J Clin Invest 2011;41:719-33. [DOI via Crossref]    [Pubmed]   
90. Bhuriya R, Singh M, Sethi A, Molnar J, Bahekar A, Singh PP, et al. Prevention of recurrent atrial fibrillation with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers: A systematic McCarty, et al.: Angiotensin antagonists as source antioxidants 10 Oxid Antioxid Med Sci ● 2015 ● Vol 4 ● Issue 1 review and meta-analysis of randomized trials. J Cardiovasc Pharmacol Ther 2011;16:178-84. [DOI via Crossref]    [Pubmed]   
91. Khatib R, Joseph P, Briel M, Yusuf S, Healey J. Blockade of the reninangiotensin- aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: A systematic review and meta analysis of randomized controlled trials. Int J Cardiol 2013;165:17-24. [DOI via Crossref]    [Pubmed]   
92. Han M, Zhang Y, Sun S, Wang Z, Wang J, Xie X, et al. Renin-angiotensin system inhibitors prevent the recurrence of atrial fibrillation: A metaanalysis of randomized controlled trials. J Cardiovasc Pharmacol 2013;62:405-15. [DOI via Crossref]    [Pubmed]   
93. GISSI-AF Investigators, Disertori M, Latini R, Barlera S, Franzosi MG, Staszewsky L, et al. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med 2009;360:1606-17. [DOI via Crossref]    [Pubmed]   
94. Goette A, Sch�n N, Kirchhof P, Breithardt G, Fetsch T, H�usler KG, et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ Arrhythm Electrophysiol 2012;5:43-51. [DOI via Crossref]    [Pubmed]   
95. Tveit A, Grundvold I, Olufsen M, Seljeflot I, Abdelnoor M, Arnesen H, et al. Candesartan in the prevention of relapsing atrial fibrillation. Int Cardiol 2007;120:85-91. [DOI via Crossref]    [Pubmed]   
96. ACTIVE I Investigators, Yusuf S, Healey JS, Pogue J, Chrolavicius S, Flather M, et al. Irbesartan in patients with atrial fibrillation. N Engl J Med 2011;364:928-38. [DOI via Crossref]    [Pubmed]   
97. Disertori M, Barlera S, Staszewsky L, Latini R, Quintarelli S, Franzosi MG. Systematic review and meta-analysis: Renin-Angiotensin system inhibitors in the prevention of atrial fibrillation recurrences: An unfulfilled hope. Cardiovasc Drugs Ther 2012;26:47-54. [DOI via Crossref]    [Pubmed]   
98. Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation 2005;112:1266-73. [DOI via Crossref]    [Pubmed]   
99. Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C, et al. A myocardial Nox2 containing NAD(P) H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res 2005;97:629-36. [DOI via Crossref]    [Pubmed]   
100. Adam O, Frost G, Custodis F, Sussman MA, Sch�fers HJ, B�hm M, et al. Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 2007;50:359-67. [DOI via Crossref]    [Pubmed]   
101. Sovari AA, Morita N, Karagueuzian HS. Apocynin: A potent NADPH oxidase inhibitor for the management of atrial fibrillation. Redox Rep 2008;13:242-5. [DOI via Crossref]    [Pubmed]   
102. Reilly SN, Jayaram R, Nahar K, Antoniades C, Verheule S, Channon KM, et al. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: Implications for the antiarrhythmic effect of statins. Circulation 2011;124:1107-17. [DOI via Crossref]    [Pubmed]   
103. Zhang J, Youn JY, Kim AY, Ramirez RJ, Gao L, Ngo D, et al. NOX4- dependent hydrogen peroxide overproduction in human atrial fibrillation and HL-1 atrial cells: Relationship to hypertension. Front Physiol 2012;3:140. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
104. Youn JY, Zhang J, Zhang Y, Chen H, Liu D, Ping P, et al. Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase. J Mol Cell rdiol 2013;62:72-9. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
105. Purohit A, Rokita AG, Guan X, Chen B, Koval OM, Voigt N, et al. Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 2013;128:1748-57. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
106. Yang KC, Dudley SC Jr. Oxidative stress and atrial fibrillation: Finding a missing piece to the puzzle. Circulation 2013;128:1724-6. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
107. Galzerano D, Di Michele S, Paolisso G, Tuccillo B, Lama D, Carbotta S, et al. A multicentre, randomized study of telmisartan versus carvedilol for prevention of atrial fibrillation recurrence in hypertensive patients. J Renin Angiotensin Aldosterone Syst 2012;13:496-503. [DOI via Crossref]    [Pubmed]   
108. Yamagishi S, Takenaka K, Inoue H. Role of insulin-sensitizing property of telmisartan, a commercially available angiotensin II type 1 receptor blocker in preventing the development of atrial fibrillation. Med Hypotheses 2006;66:118-20. [DOI via Crossref]    [Pubmed]   
109. Xu D, Murakoshi N, Igarashi M, Hirayama A, Ito Y, Seo Y, et al. PPARgamma activator pioglitazone prevents age-related atrial fibrillation susceptibility by improving antioxidant capacity and reducing apoptosis in a rat model. J Cardiovasc Electrophysiol 2012;23:209-17. [DOI via Crossref]    [Pubmed]   
110. Liu T, Zhao H, Li J, Korantzopoulos P, Li G. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxaninduced diabetic rabbits. Cardiovasc Ther 2014;32:178-83. [DOI via Crossref]    [Pubmed]   
111. Chao TF, Leu HB, Huang CC, Chen JW, Chan WL, Lin SJ, et al. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes. Int J Cardiol 2012;156:199-202. [DOI via Crossref]    [Pubmed]   
112. Schmieder RE, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 1996;275:1507-13. [DOI via Crossref]    [Pubmed]   
113. Fleischmann EH, Schmieder RE. Are all antihypertensive drug classes equal in reducing left ventricular hypertrophy? Curr Cardiol Rep 2002;4:474-8. [DOI via Crossref]    [Pubmed]   
114. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 2003;115:41-6. [DOI via Crossref]   
115. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: A meta-analysis of randomized comparative studies. Hypertension 2009;54:1084-91. [DOI via Crossref]    [Pubmed]   
116. Yang LY, Ge X, Wang YL, Ma KL, Liu H, Zhang XL, et al. Angiotensin receptor blockers reduce left ventricular hypertrophy in dialysis patients: A meta-analysis. Am J Med Sci 2013;345:1-9. [DOI via Crossref]    [Pubmed]   
117. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 2003;93:802-5. [DOI via Crossref]    [Pubmed]   
118. Murdoch CE, Zhang M, Cave AC, Shah AM. NADPH oxidasedependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res 2006;71:208-15. [DOI via Crossref]    [Pubmed]   
119. Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 2007;93:903-7. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
120. Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, et al. Critical role of the NAD(P) H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 2007;100:894-903. [DOI via Crossref]    [Pubmed]   
121. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 2008;51:319-25. [DOI via Crossref]    [Pubmed]   
122. Bodiga S, Zhong JC, Wang W, Basu R, Lo J, Liu GC, et al. Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc Res 2011;91:151-61. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
123. Schreiber R, Ferreira-Sae MC, Ronchi JA, Pio-Magalh�es JA, Cipolli JA, Matos-Souza JR, et al. The C242T polymorphism of the p22-phox gene (CYBA) is associated with higher left ventricular mass in Brazilian hypertensive patients. BMC Med Genet 2011;12:114. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
124. Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM. NADPH oxidases in heart failure: Poachers or gamekeepers? Antioxid Redox Signal 2013;18:1024-41. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
125. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie LH, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 2013;112:651-63. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
126. Hu CM, Chen YH, Chiang MT, Chau LY. Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 2004;110:309-16. [DOI via Crossref]    [Pubmed]   
127. Ndisang JF, Jadhav A. Upregulating the heme oxygenase system suppresses left ventricular hypertrophy in adult spontaneously hypertensive rats for 3 months. J Card Fail 2009;15:616-28. [DOI via Crossref]    [Pubmed]   
128. Lu H, Rateri DL, Cassis LA, Daugherty A. The role of the reninangiotensin system in aortic aneurysmal diseases. Curr Hypertens Rep 2008;10:99-106. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
129. Silverberg D, Younis A, Savion N, Harari G, Yakubovitch D, Sheick Yousif B, et al. Long-term renin-angiotensin blocking therapy in hypertensive patients with normal aorta may attenuate the formation of abdominal aortic aneurysms. J Am Soc Hypertens 2014;8:571-7. [DOI via Crossref]    [Pubmed]   
130. Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwala M, Bujak-Gizycka B, et al. Mechanisms of oxidative stress in human aortic aneurysms � association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 2013;168:2389-96. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
131. Aoki T, Nishimura M, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Reactive oxygen species modulate growth of cerebral aneurysms: A study using the free radical scavenger edaravone and p47phox(-/-) mice. Lab Invest 2009;89:730-41. [DOI via Crossref]    [Pubmed]   
132. Xiong W, Mactaggart J, Knispel R, Worth J, Zhu Z, Li Y, et al. Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model. Atherosclerosis 2009;202:128-34. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
133. Gavazzi G, Deffert C, Trocme C, Sch�ppi M, Herrmann FR, Krause KH. NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 2007;50:189-96. [DOI via Crossref]    [Pubmed]   
134. McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the patho

This Article Cited By the following articles

Oxidative Stress and Human Health
Oxidative Stress: Diagnostics, Prevention, and Therapy Volume 2 2015; 1200(): 1-33.

1
 

How to Cite this Article
Pubmed Style

McCarty MF, DiNicolantonio JJ, Glassman CF. Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. Oxid Antioxid Med Sci. 2015; 4(1): 1-16. doi:10.5455/oams.180115.rv.015


Web Style

McCarty MF, DiNicolantonio JJ, Glassman CF. Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. http://www.ejmoams.com/?mno=177099 [Access: August 20, 2018]. doi:10.5455/oams.180115.rv.015


AMA (American Medical Association) Style

McCarty MF, DiNicolantonio JJ, Glassman CF. Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. Oxid Antioxid Med Sci. 2015; 4(1): 1-16. doi:10.5455/oams.180115.rv.015



Vancouver/ICMJE Style

McCarty MF, DiNicolantonio JJ, Glassman CF. Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. Oxid Antioxid Med Sci. (2015), [cited August 20, 2018]; 4(1): 1-16. doi:10.5455/oams.180115.rv.015



Harvard Style

McCarty, M. F., DiNicolantonio, J. J. & Glassman, C. F. (2015) Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. Oxid Antioxid Med Sci, 4 (1), 1-16. doi:10.5455/oams.180115.rv.015



Turabian Style

McCarty, Mark F., James J. DiNicolantonio, and Charles F. Glassman. 2015. Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. Oxidants and Antioxidants in Medical Science, 4 (1), 1-16. doi:10.5455/oams.180115.rv.015



Chicago Style

McCarty, Mark F., James J. DiNicolantonio, and Charles F. Glassman. "Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control." Oxidants and Antioxidants in Medical Science 4 (2015), 1-16. doi:10.5455/oams.180115.rv.015



MLA (The Modern Language Association) Style

McCarty, Mark F., James J. DiNicolantonio, and Charles F. Glassman. "Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control." Oxidants and Antioxidants in Medical Science 4.1 (2015), 1-16. Print. doi:10.5455/oams.180115.rv.015



APA (American Psychological Association) Style

McCarty, M. F., DiNicolantonio, J. J. & Glassman, C. F. (2015) Angiotensin antagonist drugs as “source antioxidants” – down-regulation of NADPH oxidase activation mediates many of their protective benefits, independent of hypertension control. Oxidants and Antioxidants in Medical Science, 4 (1), 1-16. doi:10.5455/oams.180115.rv.015





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 13 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 11 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 8 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 7 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]