1. Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S, Ma D, Masi S, Allred P, Al-Lozi M, Reilly MM, Miller LJ, Jani-Acsadi A, Pestronk A, Shy ME, Muntoni F, Vallee RB, Baloh RH. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 2012; 78:1714-20. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 2. Hoffman EP, Talbot K. A calm before the exome storm: coming together of dSMA and CMT2. Neurology 2012; 78:1706-7. [DOI via Crossref] [Pubmed] | | 3. Tsurusaki Y, Saitoh S, Tomizawa K, Sudo A, Asahina N, Shiraishi H, Ito J, Tanaka H, Doi H, Saitsu H, Miyake N, Matsumoto N. A DYNC1H1 mutation causes a dominant spinal muscular atrophy with lower extremity predominance. Neurogenetics 2012; 13:327-32. [DOI via Crossref] [Pubmed] | | 4. Harms MB, Allred P, Gardner R Jr, Fernandes Filho JA, Florence J, Pestronk A, Al-Lozi M, Baloh RH. Dominant spinal muscular atrophy with lower extremity predominance: linkage to 14q32. Neurology 2010; 75:539-46. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 5. Fiorillo C, Moro F, Yi J, Weil S, Brisca G, Astrea G, Severino M, Romano A, Battini R, Rossi A, Minetti C, Bruno C, Santorelli FM, Vallee R. Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development. Hum Mutat 2014; 35:298-302. [DOI via Crossref] [Pubmed] | | 6. Schiavo G, Greensmith L, Hafezparast M, Fisher EM. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013; 36:641-51. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 7. Rogers DC, Peters J, Martin JE, Ball S, Nicholson SJ, Witherden AS, Hafezparast M, Latcham J, Robinson TL, Quilter CA, Fisher EM. SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice. Neurosci Lett 2001; 306:89-92. [DOI via Crossref] | | 8. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley JV, Averill S, King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe de Angelis M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 2003; 300:808-12. [DOI via Crossref] [Pubmed] | | 9. El-Kadi AM, Bros-Facer V, Deng W, Philpott A, Stoddart E, Banks G, Jackson GS, Fisher EM, Duchen MR, Greensmith L, Moore AL, Hafezparast M. The legs at odd angles (Loa) mutation in cytoplasmic dynein ameliorates mitochondrial function in SOD1G93A mouse model for motor neuron disease. J Biol Chem 2010; 285:18627-39. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 10. Eschbach J, Fergani A, Oudart H, Robin JP, Rene F, Gonzalez de Aguilar JL, Larmet Y, Zoll J, Hafezparast M, Schwalenstocker B, Loeffler JP, Ludolph AC, Dupuis L. Mutations in cytoplasmic dynein lead to a Huntington's disease-like defect inenergy metabolism of brown and white adipose tissues. Biochim Biophys Acta 2011; 1812:59-69. [DOI via Crossref] [Pubmed] | | 11. Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J Neurosci 2007; 27:14515-24. [DOI via Crossref] [Pubmed] | | 12. Courchesne SL, Pazyra-Murphy MF, Lee DJ, Segal RA. Neuromuscular junction defects in mice with mutation of dynein heavy chain 1. PLoS One 2011; 6:e16753. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 13. Wiggins LM, Kuta A, Stevens JC, Fisher EM, von Bartheld CS. A novel phenotype for the dynein heavy chain mutation Loa: altered dendritic morphology, organelle density, and reduced numbers of trigeminal motoneurons. J Comp Neurol 2012; 520:2757-73. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 14. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14:1105-16. [DOI via Crossref] | | 15. Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 1998; 18:3241-50. [Pubmed] | | 16. Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 2006; 1762:1051-67. [DOI via Crossref] [Pubmed] | | 17. Teuchert M, Fischer D, Schwalenstoecker B, Habisch HJ, Böckers TM, Ludolph AC. A dynein mutation attenuates motor neuron degeneration in SOD1(G93A) mice. Exp Neurol 2006; 198:271-4. [DOI via Crossref] [Pubmed] | | 18. Terry AV Jr. Neurodegeneration. Encyclopedia of Molecular Pharmacology. Springer, Berlin-Heidelberg-New York, pp 822-827, 2008. [DOI via Crossref] | | 19. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 2012; 322:254-62. [DOI via Crossref] [Pubmed] | | 20. Eschbach J, Sinniger J, Bouitbir J, Fergani A, Schlagowski AI, Zoll J, Geny B, Rene F, Larmet Y, Marion V, Baloh RH, Harms MB, Shy ME, Messadeq N, Weydt P, Loeffler JP, Ludolph AC, Dupuis L. Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. Neurobiol Dis 2013; 58:220-30. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 21. Drechsel DA, Patel M. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 2010; 285:27850-8. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 22. Angeles DC, Gan BH, Onstead L, Zhao Y, Lim KL, Dachsel J, Melrose H, Farrer M, Wszolek ZK, Dickson DW, Tan EK. Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat 2011; 32:1390-7. [DOI via Crossref] [Pubmed] | | 23. Lopert P, Day BJ, Patel M. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 2012; 7:e50683. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 24. Liu G, Feinstein SI, Wang Y, Dodia C, Fisher D, Yu K, Ho YS, Fisher AB. Comparison of glutathione peroxidase 1 and peroxiredoxin 6 in protection against oxidative stress in the mouse lung. Free Radic Biol Med 2010; 49:1172-81. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 25. Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase Aâ,, activities. Antioxid Redox Signal 2011; 15:831-44. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 26. Yata K, Oikawa S, Sasaki R, Shindo A, Yang R, Murata M, Kanamaru K, Tomimoto H. Astrocytic neuroprotection through induction of cytoprotective molecules; a proteomic analysis of mutant P301S tau-transgenic mouse. Brain Res 2011; 1410:12-23. [Pubmed] | | 27. Elkharaz J, Ugun-Klusek A, Constantin-Teodosiu D, Lawler K, Mayer RJ, Billett E, Lowe J, Bedford L. Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta 2013; 1832:1930-8. [DOI via Crossref] [Pubmed] | | 28. Jin MH, Lee YH, Kim JM, Sun HN, Moon EY, Shong MH, Kim SU, Lee SH, Lee TH, Yu DY, Lee DS. Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neurosci Lett 2005; 381:252-7. [DOI via Crossref] [Pubmed] | | 29. Power JH, Asad S, Chataway TK, Chegini F, Manavis J, Temlett JA, Jensen PH, Blumbergs PC, Gai WP. Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer's disease pathology. Acta Neuropathol 2008; 115:611-22. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 30. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 2003; 967:152-60. [DOI via Crossref] | | 31. Hwang IK, Yoo KY, Kim DW, Lee CH, Choi JH, Kwon YG, Kim YM, Choi SY, Won MH. Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 2010; 48:1242-51. [DOI via Crossref] [Pubmed] | | 32. Fang KM, Chen JK, Hung SC, Chen MC, Wu YT, Wu TJ, Lin HI, Chen CH, Cheng H, Yang CS, Tzeng SF. Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. PLoS One 2010; 5:e15299. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 33. Nguyen DH, Zhou T, Shu J, Mao JH. Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer InCytes 2013; 2(1):e. | | 34. Matkowskyj KA, Schonfeld D, Benya RV. Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software photoshop and matlab. J Histochem Cytochem 2000; 48:303-12. [DOI via Crossref] [Pubmed] | | 35. DeGirolami UU, Smith TW. Teaching monograph: pathology of skeletal muscle diseases. Am J Pathol 1982; 107:231-76. [Pubmed] [PMC Free Fulltext] | | 36. Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL. Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 2000; 859:157-66. [DOI via Crossref] | | 37. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 2013; 12:105-18. [DOI via Crossref] | | 38. Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 39. Ock J, Han HS, Hong SH, Lee SY, Han YM, Kwon BM, Suk K. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br J Pharmacol 2010; 159:1646-62. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 40. Peterson LJ, Flood PM. Oxidative stress and microglial cells in Parkinson's disease. Mediators Inflamm 2012; 2012:401264. | | 41. Qin L, Liu Y, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013; 61:855-68. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 42. Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999; 58:233-47. [DOI via Crossref] | | 43. Zheng LT, Ock J, Kwon BM, Suk K. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol 2008; 8:484-94. [DOI via Crossref] [Pubmed] | | 44. Kim SU, Hwang CN, Sun HN, Jin MH, Han YH, Lee H, Kim JM, Kim SK, Yu DY, Lee DS, Lee SH. Peroxiredoxin I is an indicator of microglia activation and protects against hydrogen peroxide-mediated microglial death. Biol Pharm Bull 2008; 31:820-5. [DOI via Crossref] [Pubmed] | | 45. Sun HN, Kim SU, Huang SM, Kim JM, Park YH, Kim SH, Yang HY, Chung KJ, Lee TH, Choi HS, Min JS, Park MK, Kim SK, Lee SR, Chang KT, Lee SH, Yu DY, Lee DS. Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J Neurochem 2010; 114:39-50. [Pubmed] | | 46. Strey CW, Spellman D, Stieber A, Gonatas JO, Wang X, Lambris JD, Gonatas NK. Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am J Pathol 2004; 165:1701-18. [DOI via Crossref] | | 47. Yoon S, Cong WT, Bang Y, Lee SN, Yoon CS, Kwack SJ, Kang TS, Lee KY, Choi JK, Choi HJ. Proteome response to ochratoxin A-induced apoptotic cell death in mouse hippocampal HT22 cells. Neurotoxicology 2009; 30:666-76. [DOI via Crossref] [Pubmed] | | 48. Pal A, Fontanilla D, Gopalakrishnan A, Chae YK, Markley JL, Ruoho AE. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol 2012; 682:12-20. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 49. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007; 10:615-22. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 50. Trudel S, Kelly M, Fritsch J, Nguyen-Khoa T, Thérond P, Couturier M, Dadlez M, Debski J, Touqui L, Vallée B, Ollero M, Edelman A, Brouillard F. Peroxiredoxin 6 fails to limit phospholipid peroxidation in lung from Cftr-knockout mice subjected to oxidative challenge. PLoS One 2009; 4:e6075. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 51. Chaiswing L, Zhong W, Oberley TD. Increasing discordant antioxidant protein levels and enzymatic activities contribute to increasing redox imbalance observed during human prostate cancer progression. Free Radic Biol Med 2013; 67:342-52. [DOI via Crossref] [Pubmed] | | 52. Liu JQ, Zheng SQ, Sang YZ, Sun Y, Zhang HW, Xiong YJ, Yi Y, Wang JR. Expression of peroxiredoxin I in the rats exposed to silica. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2013; 31:531-3. [Pubmed] | | 53. Wojcik KA, Kaminska A, Blasiak J, Szaflik J, Szaflik JP. Oxidative stress in the pathogenesis of keratoconus and Fuchs endothelial corneal dystrophy. Int J Mol Sci 2013; 14:19294-308. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 54. Rohl C, Armbrust E, Kolbe K, Lucius R, Maser E, Venz S, Gulden M. Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia 2008; 56:1114-26. [DOI via Crossref] [Pubmed] | | 55. Holley JE, Newcombe J, Winyard PG, Gutowski NJ. Peroxiredoxin V in multiple sclerosis lesions: predominant expression by astrocytes. Mult Scler 2007; 13:955-61. [DOI via Crossref] [Pubmed] | | 56. Rowe DD, Leonardo CC, Hall AA, Shahaduzzaman MD, Collier LA, Willing AE, Pennypacker KR. Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 2010; 1366:172-88. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 57. Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev 2013; 2013:836760. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 58. Kieran D, Hafezparast M, Bohnert S, Dick JR, Martin J, Schiavo G, Fisher EM, Greensmith L. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J Cell Biol 2005; 169:561-7. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 59. Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT. Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 2003; 38:863-76. [DOI via Crossref] | | 60. Lu JL, Vallat JM, Pollard JD, Knoops B, Ouvrier R. Expression of the antioxidant enzyme peroxiredoxin 5 in the human peripheral nervous system. J Peripher Nerv Syst 2006; 11:318-24. [DOI via Crossref] [Pubmed] | | 61. Yoo KY, Park OK, Yu J, Yan B, Li H, Lee CH, Choi JH, Kim DW, Hwang IK, Won MH. Expression and changes of hyperoxidized peroxiredoxins in non-pyramidal and polymorphic cells in the gerbil hippocampus during normal aging. Cell Mol Neurobiol 2009; 29:413-21. [DOI via Crossref] [Pubmed] | | 62. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod 2011; 84:775-82. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 63. Nystrom T, Yang J, Molin M. Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev 2012; 26:2001-8. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 64. Knight JA. The biochemistry of aging. Adv Clin Chem 2000; 35:1-62. [DOI via Crossref] | | 65. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004; 10:S18-25. [DOI via Crossref] [Pubmed] | | 66. Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci 2004; 59:478-93. [DOI via Crossref] [Pubmed] | | 67. Kazmierczak B, Kuzma-Kozakiewicz M, Usarek E, Baranczyk-Kuzma A. Differences in glutathione S-transferase pi expression in transgenic mice with symptoms of neurodegeneration. Acta Biochim Pol 2011; 58:621-6. [Pubmed] | | 68. Fiorillo C, Moro F, Yi J, Weil S, Brisca G, Astrea G, Severino M, Romano A, Battini R, Rossi A, Minetti C, Bruno C, Santorelli FM, Vallee R. Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development. Hum Mutat 2014; 35:298-302. [DOI via Crossref] [Pubmed] | | 69. Miquel E, Cassina A, Martinez-Palma L, Bolatto C, Trías E, Gandelman M, Radi R, Barbeito L, Cassina P. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One 2012; 7:e34776. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | | 70. Novoselov VI, Baryshnikova LM, Yanin VA, Amelina SE, Fesenko EE. The influence of peroxyredoxin VI on incised-wound healing in rats. Dokl Biochem Biophys 2003; 393:326-7. [DOI via Crossref] [Pubmed] | | 71. Kayadjanian N, Burghes A, Finkel RS, Mercuri E, Rouault F, Schwersenz I, Talbot K. SMA-EUROPE workshop report: Opportunities and challenges in developing clinical trials for spinal muscular atrophy in Europe. Orphanet J Rare Dis 2013; 8:44. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] | |
|
|